For the requirement of safe and stable operation,the combined sealing structure was used for reciprocating motion in the deep sea high-pressure environment,and the effects of different seawater depths and shaft moveme...For the requirement of safe and stable operation,the combined sealing structure was used for reciprocating motion in the deep sea high-pressure environment,and the effects of different seawater depths and shaft movement speed on the sealing performance of the combined sealing structure were studied.The change rule of the sealing performance of the combined sealing structure of reciprocating motion under different working conditions is proved.The study shows that in the combined sealing structure of reciprocating movement,the Von Mises stress and the contact stress of the O-ring varies with the direction of the shaft movement.The Von Mises stress and contact stress of the O-ring,the Von Mises stress and the contact stress on each sealing lip of the slip ring gradually increase with the increasing of seawater depths.At the same time,the Von Mises stress of the O-ring which in the process of the shaft upward movement is greater than the shaft downward movement,making the shaft upward movement more likely to cause the O-ring relaxation and fatigue.The shaft movement speed has no significant influence on the Von Mises stress and contact stress of the O-ring.The research results provide theoretical guidance and technical support for the selection and optimization of the geometrical parameters of the combined sealing structure in the deep-sea high-pressure environment.展开更多
Purpose–This study aims to investigate the service performances of a new full-section asphalt concrete waterproof sealing structure(FSACWSS)for the high-speed railway subgrade through on-site tracking,monitoring and ...Purpose–This study aims to investigate the service performances of a new full-section asphalt concrete waterproof sealing structure(FSACWSS)for the high-speed railway subgrade through on-site tracking,monitoring and post-construction investigation.Design/methodology/approach–Based on the working state of the waterproof sealing structure,the main functional characteristics were analyzed,and a kind of roller-compacted high elastic modulus asphalt concrete(HEMAC)was designed and evaluated by several groups of laboratory tests.It is applied to an engineering test section,and the long-term performance monitoring and subgrade dynamic performance testing system were installed to track and monitor working performances of the test section and the adjacent contrast section with fiber-reinforced concrete.Findings–Results show that both the dynamic performance of the track structure and the subgrade in the test section meet the requirements of the specification limits.The water content in the subgrade of the test section is maintained at 8–18%,which is less affected by the weather.However,the water content in the subgrade bed of the contrast section is 10–35%,which fluctuates significantly with the weather.The heat absorption effect of asphalt concrete in the test section makes the temperature of the subgrade at the shoulder larger than that in the contrastive section.The monitoring value of the subgrade vertical deformation in the test section is slightly larger than that in the contrastive section,but all of them meet the limit requirements.The asphalt concrete in the test section is in good contact with the base,and there are no diseases such as looseness or spalling.Only a number of cracks are found at the joints of the base plates.However,there are more longitudinal and lateral cracks in the contrastive section,which seriously affects the waterproof and sealing effects.Besides,the asphalt concrete is easier to repair,featuring good maintainability.Originality/value–This research can provide a basis for popularization and application of the asphalt concrete waterproof sealing structure in high-speed railways.展开更多
Proton-exchange-membrane fuel cells(PEMFCs)have the characteristics of zero emissions,a low operating temperature and high power density,and have great potential in improving energy-utilization efficiency.However,fuel...Proton-exchange-membrane fuel cells(PEMFCs)have the characteristics of zero emissions,a low operating temperature and high power density,and have great potential in improving energy-utilization efficiency.However,fuel cells are still quite expensive as a result of the cost of key components,including the membranes,catalysts and bipolar plates of PEMFCs.As a result of the cost and importance of these items,most researchers have focused on improving the lifetime and performance of fuel-cell stacks in recent years.In contrast,seals,sealants and adhesives play a more mundane role in the overall performance of a fuel cell,but failure of these materials can lead to reduced system efficiency,system failure and even safety issues.Little attention has been paid to the performance and durability of these products but as other fuel-cell components improve,these seals are becoming an even more critical link in the long-term performance of fuel cells.This article highlights the importance and background of fuel-cell seals.The latest research progress on the mechanical properties and structural optimization of different sealing materials is reviewed.展开更多
The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentrat...The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentration attenuates rapidly,and the effective gas drainage period is short.The traditional sealing materials of yellow mud and cement-sand grout will readily shrink after the drilling hole is sealed,the sealing length is short and the sealing quality is not satisfactory.Currently widely used polyurethane material will shrink when it comes into contact with water,and the price is also very high.In this study,taking cement as a base material,a novel composite sealing material mixed by expansion admixture,additive,and fbrin and coupling agent was developed and the sealing performance and expansion property of the material were also studied and analyzed.The FEI Quanta TM 250 environmental scanning electron microscope was used to investigate the microstructure of material.The results revealed that the new composite sealing material had a desirable expansion performance and a defnite fluidity convenient for grouting.The solidifed material,combining closely with the drilling wall,possessed an adequate strength and was not easy to shrink.Compared to the conventional polyurethane,the gas drainage concentration by drilling sealing exceeded 40 percent,and the sealing capacity improves5 times,the sealing effect increases signifcantly.展开更多
The principle and characteristics of hydrostatic gas lubricated non-contacting mechanical seal (HSGLNMS) are introduced. The flow field of the gas film is established by numerical analysis of end faces of HSGLNMS. T...The principle and characteristics of hydrostatic gas lubricated non-contacting mechanical seal (HSGLNMS) are introduced. The flow field of the gas film is established by numerical analysis of end faces of HSGLNMS. The distribution of gas film pressure and seal performance parameters inclu- ding opening force and leakage are obtained. Influence of operating parameters and sealing configu- ration on the sealing performance is studied. HSGLNMS has been designed and manufactured. Its working film thickness and leakage are measured to verify the theoretical analysis. The investigation results show that HSGLNMS demonstrates good speed adaptability, which means that the seal runs successfully with both low and high speed, showing excellent performance. The seal can be regula- ted and controlled online ; the opening force will not be raised greatly with the increasing of the num- ber of throttle orifices, but the leakage of seal increases apparently ; the uniform pressure groove im- proves the sealing performance, for example, opening force and stiffness are raised obviously. While leakage is reduced. Finally, the theoretical analysis is verified by experiment.展开更多
Most major oil zones in the Daqing Oilfield have reached a later,high water cut stage,but oil recovery is still only approximately 35%,and 50%of reserves remain to be recovered.The remaining oil is primarily distribut...Most major oil zones in the Daqing Oilfield have reached a later,high water cut stage,but oil recovery is still only approximately 35%,and 50%of reserves remain to be recovered.The remaining oil is primarily distributed at the edge of faults,in poor sand bodies,and in insufficiently injected and produced areas.Therefore,the edge of faults is a major target for remaining oil enrichment and potential tapping.Based on the dynamic change of production from development wells determined by the injection-recovery relationship at the edge of faults,we analyzed the control of structural features of faults on remaining oil enrichment at the edge.Our results show that the macroscopic structural features and their geometric relationship with sand bodies controlled remaining oil enrichment zones like the edges of NNE-striking faults,the footwalls of antithetic faults,the hard linkage segments(two faults had linked together with each other to form a bigger through-going fault),the tips of faults,and the oblique anticlines of soft linkages.Fault edges formed two types of forward microamplitude structures:(1) the tilted uplift of footwalls controlled by inverse fault sections and(2) the hanging-wall horizontal anticlines controlled by synthetic fault points.The remaining oil distribution was controlled by microamplitude structures.Consequently,such zones as the tilted uplift of the footwall of the NNW-striking antithetic faults with a fault throw larger than 40 m,the hard linkage segments,the tips of faults,and the oblique anticlines of soft linkage were favorable for tapping the remaining oil potential.Multi-target directional drilling was used for remaining oil development at fault edges.Reasonable fault spacing was determined on the basis of fault combinations and width of the shattered zone.Well core and log data revealed that the width of the shattered zone on the side of the fault core was less than 15 m in general;therefore,the distance from a fault to the development target should be larger than 15 m.Vertically segmented growth faults should take the separation of the lateral overlap of faults into account.Therefore,the safe distance of remaining oil well deployment at the fault edge should be larger than the sum of the width of shattered zone in faults and the separation of growth faults by vertical segmentation.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.51705145, 51779092)the National Key Research and Development Program of China (Grant No.2016YFC0300502 and No.2017YFC0307501)+1 种基金Natural Science Foundation of Hunan Province of China (Grant No.2019JJ50182)Research Foundation of Education Bureau of Hunan Province (Grant No.18B205)
文摘For the requirement of safe and stable operation,the combined sealing structure was used for reciprocating motion in the deep sea high-pressure environment,and the effects of different seawater depths and shaft movement speed on the sealing performance of the combined sealing structure were studied.The change rule of the sealing performance of the combined sealing structure of reciprocating motion under different working conditions is proved.The study shows that in the combined sealing structure of reciprocating movement,the Von Mises stress and the contact stress of the O-ring varies with the direction of the shaft movement.The Von Mises stress and contact stress of the O-ring,the Von Mises stress and the contact stress on each sealing lip of the slip ring gradually increase with the increasing of seawater depths.At the same time,the Von Mises stress of the O-ring which in the process of the shaft upward movement is greater than the shaft downward movement,making the shaft upward movement more likely to cause the O-ring relaxation and fatigue.The shaft movement speed has no significant influence on the Von Mises stress and contact stress of the O-ring.The research results provide theoretical guidance and technical support for the selection and optimization of the geometrical parameters of the combined sealing structure in the deep-sea high-pressure environment.
基金funded by the National Natural Science Foundation of China[51778136 and 41972299].
文摘Purpose–This study aims to investigate the service performances of a new full-section asphalt concrete waterproof sealing structure(FSACWSS)for the high-speed railway subgrade through on-site tracking,monitoring and post-construction investigation.Design/methodology/approach–Based on the working state of the waterproof sealing structure,the main functional characteristics were analyzed,and a kind of roller-compacted high elastic modulus asphalt concrete(HEMAC)was designed and evaluated by several groups of laboratory tests.It is applied to an engineering test section,and the long-term performance monitoring and subgrade dynamic performance testing system were installed to track and monitor working performances of the test section and the adjacent contrast section with fiber-reinforced concrete.Findings–Results show that both the dynamic performance of the track structure and the subgrade in the test section meet the requirements of the specification limits.The water content in the subgrade of the test section is maintained at 8–18%,which is less affected by the weather.However,the water content in the subgrade bed of the contrast section is 10–35%,which fluctuates significantly with the weather.The heat absorption effect of asphalt concrete in the test section makes the temperature of the subgrade at the shoulder larger than that in the contrastive section.The monitoring value of the subgrade vertical deformation in the test section is slightly larger than that in the contrastive section,but all of them meet the limit requirements.The asphalt concrete in the test section is in good contact with the base,and there are no diseases such as looseness or spalling.Only a number of cracks are found at the joints of the base plates.However,there are more longitudinal and lateral cracks in the contrastive section,which seriously affects the waterproof and sealing effects.Besides,the asphalt concrete is easier to repair,featuring good maintainability.Originality/value–This research can provide a basis for popularization and application of the asphalt concrete waterproof sealing structure in high-speed railways.
文摘Proton-exchange-membrane fuel cells(PEMFCs)have the characteristics of zero emissions,a low operating temperature and high power density,and have great potential in improving energy-utilization efficiency.However,fuel cells are still quite expensive as a result of the cost of key components,including the membranes,catalysts and bipolar plates of PEMFCs.As a result of the cost and importance of these items,most researchers have focused on improving the lifetime and performance of fuel-cell stacks in recent years.In contrast,seals,sealants and adhesives play a more mundane role in the overall performance of a fuel cell,but failure of these materials can lead to reduced system efficiency,system failure and even safety issues.Little attention has been paid to the performance and durability of these products but as other fuel-cell components improve,these seals are becoming an even more critical link in the long-term performance of fuel cells.This article highlights the importance and background of fuel-cell seals.The latest research progress on the mechanical properties and structural optimization of different sealing materials is reviewed.
基金fnancially supported by the National Natural Science Foundation of China(No.51274195)the Natural Science Foundation of Jiangsu Province(No.BK2012571)+3 种基金the Program for New Century Excellent Talents in University(No.NCET-12-0959)the China Postdoctoral Science Foundation(No.20090450930)the National Basic Research Program of China(No.2011CB201205)Qing Lan Project,and the Youth Foundation of China University of Mining and Technology(No.2007A003)
文摘The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentration attenuates rapidly,and the effective gas drainage period is short.The traditional sealing materials of yellow mud and cement-sand grout will readily shrink after the drilling hole is sealed,the sealing length is short and the sealing quality is not satisfactory.Currently widely used polyurethane material will shrink when it comes into contact with water,and the price is also very high.In this study,taking cement as a base material,a novel composite sealing material mixed by expansion admixture,additive,and fbrin and coupling agent was developed and the sealing performance and expansion property of the material were also studied and analyzed.The FEI Quanta TM 250 environmental scanning electron microscope was used to investigate the microstructure of material.The results revealed that the new composite sealing material had a desirable expansion performance and a defnite fluidity convenient for grouting.The solidifed material,combining closely with the drilling wall,possessed an adequate strength and was not easy to shrink.Compared to the conventional polyurethane,the gas drainage concentration by drilling sealing exceeded 40 percent,and the sealing capacity improves5 times,the sealing effect increases signifcantly.
基金Supported by the National Natural Science Foundation of China ( No. 50635010 ) and the National Key Basic Research Program of China (2012CB026000).
文摘The principle and characteristics of hydrostatic gas lubricated non-contacting mechanical seal (HSGLNMS) are introduced. The flow field of the gas film is established by numerical analysis of end faces of HSGLNMS. The distribution of gas film pressure and seal performance parameters inclu- ding opening force and leakage are obtained. Influence of operating parameters and sealing configu- ration on the sealing performance is studied. HSGLNMS has been designed and manufactured. Its working film thickness and leakage are measured to verify the theoretical analysis. The investigation results show that HSGLNMS demonstrates good speed adaptability, which means that the seal runs successfully with both low and high speed, showing excellent performance. The seal can be regula- ted and controlled online ; the opening force will not be raised greatly with the increasing of the num- ber of throttle orifices, but the leakage of seal increases apparently ; the uniform pressure groove im- proves the sealing performance, for example, opening force and stiffness are raised obviously. While leakage is reduced. Finally, the theoretical analysis is verified by experiment.
基金financial support from the Natural Science Foundation of China (Grant No. 41272151, 41472126)the Natural Science Foundation for Distinguished Young Scholars of Heilongjiang Province, China (Grant No. JC201304)+1 种基金the Joint Funds of the National Natural Science Foundation of China (Grant No. U1562214)the Program for Huabei Oilfield (Grant No. HBYT-CY5-2015-JS-127)
文摘Most major oil zones in the Daqing Oilfield have reached a later,high water cut stage,but oil recovery is still only approximately 35%,and 50%of reserves remain to be recovered.The remaining oil is primarily distributed at the edge of faults,in poor sand bodies,and in insufficiently injected and produced areas.Therefore,the edge of faults is a major target for remaining oil enrichment and potential tapping.Based on the dynamic change of production from development wells determined by the injection-recovery relationship at the edge of faults,we analyzed the control of structural features of faults on remaining oil enrichment at the edge.Our results show that the macroscopic structural features and their geometric relationship with sand bodies controlled remaining oil enrichment zones like the edges of NNE-striking faults,the footwalls of antithetic faults,the hard linkage segments(two faults had linked together with each other to form a bigger through-going fault),the tips of faults,and the oblique anticlines of soft linkages.Fault edges formed two types of forward microamplitude structures:(1) the tilted uplift of footwalls controlled by inverse fault sections and(2) the hanging-wall horizontal anticlines controlled by synthetic fault points.The remaining oil distribution was controlled by microamplitude structures.Consequently,such zones as the tilted uplift of the footwall of the NNW-striking antithetic faults with a fault throw larger than 40 m,the hard linkage segments,the tips of faults,and the oblique anticlines of soft linkage were favorable for tapping the remaining oil potential.Multi-target directional drilling was used for remaining oil development at fault edges.Reasonable fault spacing was determined on the basis of fault combinations and width of the shattered zone.Well core and log data revealed that the width of the shattered zone on the side of the fault core was less than 15 m in general;therefore,the distance from a fault to the development target should be larger than 15 m.Vertically segmented growth faults should take the separation of the lateral overlap of faults into account.Therefore,the safe distance of remaining oil well deployment at the fault edge should be larger than the sum of the width of shattered zone in faults and the separation of growth faults by vertical segmentation.