Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulat...Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulation and the dynamic sealing capacity of UGS under intensive gas injection and withdrawal,and alternating loads.This study detailed the methodology developed by Sinopec.The approach merges disciplines like geology,geomechanics,and hydrodynamics,employing both dynamic-static and qualitative-quantitative analyses.Sinopec's evaluation methods,grounded in the in situ stress analysis,include mechanistic studies,laboratory tests,geological surveys,stress analysis,and fluid-solid interactions.Through tests on the static and dynamic sealing capacity of UGS,alongside investigations into sealing mechanisms and the geological and geomechanical properties of cap rocks and faults,A geomechanics-rock damage-seepage mechanics dynamic coupling analysis method has been developed to predict in situ stress variations relative to pore pressure changes during UGS operations and evaluate fault sealing capacity and cap rock integrity,thereby setting the maximum operational pressures.Utilizing this evaluation technique,Sinopec has defined performance metrics and criteria for evaluating the sealing capacity of depleted gas reservoirs,enabling preliminary sealing capacity evaluations at UGS sites.These evaluations have significantly informed the design of UGS construction schemes and the evaluation of fault sealing capacity and cap rock integrity during UGS operations.展开更多
Elastomer sealing performance is of critical importance for downhole tools application including the use of fracturing(Frac)plugs during multi-stage hydraulic fracking.In practice sealing performances of such plugs ar...Elastomer sealing performance is of critical importance for downhole tools application including the use of fracturing(Frac)plugs during multi-stage hydraulic fracking.In practice sealing performances of such plugs are normally evaluated through pressure tests,and in numerical simulation studies,maximum contact stress,average contact stress and contact length data are used to determine sealing quality between a packer and casing.In previous studies,the impact of friction forces on sealing performance is often overlooked.This work aims to fill this knowledge gap in determining the influence of friction forces on elastomer packer sealing performances.We first determined the most appropriate constitutive hyperelastic model for the elastomers used in frac plug.Then we compared analytical calculation results with Finite Element Analysis simulation using a simplified tubular geometry and showed the significant influences on interfacial friction on elastomer packer stress distribution,deformation,and contact stress after setting.With the demonstration of validity of FEA method,we conducted systematic numerical simulation studies to show how the interfacial friction coefficients can affect the maximum contact stress,average contact stress,contact stress distribution,and maximum mises stress for an actual packer used in plug products.In addition,we also demonstrated how the groove in a packer can affect packer deformation and evolvement during setting with the consideration of interfacial stress.This study underscores the critical role that friction forces play in Frac plug performance and provides a new dimension for optimizing packer design by controlling interfacial interactions at the packer contact surfaces.展开更多
Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consid...Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.展开更多
Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulatio...Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulation.However,conventional LCMs seem ineffective in high-temperature formations.This may be due to the changes in the mechanical properties of LCMs and their sealing performance under high-temperature conditions.To understand how high temperature affects the fracture sealing performance of LCMs,we developed a coupled computational fluid dynamics-discrete element method(CFD-DEM)model to simulate the behavior of granular LCMs in fractures.We summarized the literature on the effects of high temperature on the mechanical properties of LCMs and the rheological properties of drilling fluid.We conducted sensitivity analyses to investigate how changing LCM slurry properties affected the fracture sealing efficiency at increasing temperatures.The results show that high temperature reduces the size,strength,and friction coefficient of LCMs as well as the drilling fluid viscosity.Smaller,softer,and less frictional LCM particles have lower bridging probability and slower bridging initiation.Smaller particles tend to form dual-particle bridges rather than single-particle bridges.These result in a deeper,tighter,but unstable sealing zone.Reduced drilling fluid viscosity leads to faster and shallower sealing zones.展开更多
The Meso-Neoproterozoic is a new play in the Ordos Basin.A deeper understanding about the dynamic relationship between the caprocks and the source rocks is needed.Based on the comprehensive analysis of hydrocarbon sou...The Meso-Neoproterozoic is a new play in the Ordos Basin.A deeper understanding about the dynamic relationship between the caprocks and the source rocks is needed.Based on the comprehensive analysis of hydrocarbon source development characteristics of the Meso-Neoproterozoic and its overlying strata,as well as the formation contact relationships,lithology characteristics and exploratory drilling data,it is recognized that the Meso-Neoproterozoic contains two types of petroleum accumulation assemblage,that is,the“self-sourced indigenous”and“upper source rock-lower reservoir”assemblages.The former is mainly controlled by the development and distribution of source rocks of the Changcheng System,with the Lower Cambrian shale sequence as its caprock.The later is controlled by the superposition between the Meso-Neoproterozoic and its overlying source rocks and this assemblage is mainly distributed in Hangjinqi and Pingliang areas with the Carboniferous-Permian shale sequence as its caprock.The dynamic evaluation on the displacement pressure serves to reconstruct the displacement pressure history of the caprock.The results show that the shale sequence of the Cambrian Maozhuang Formation in well XY 1 in the southern Ordos Basin has possibly acquired the ability of sealing natural gas since the early of Late Triassic.Its displacement pressure increased rapidly up to 20 MPa during the Late Triassic-Jurassic and keeps at 9.2 MPa at present,indicating fair sealing ability.The Carboniferous-Permian caprocks in Hangjinqi area could have acquired the ability to seal natural gas in the Late Jurassic-Early Cretaceous,and the present-day displacement pressure is 9e12 MPa,indicating good sealing ability.The upper Paleozoic caprock in Pingliang area has been able to seal natural gas since the Early Jurassic,with a maximum displacement pressure of 23 MPa during the Cretaceous period and a current value of 17 e20 MPa,indicative of strong ability to seal natural gas.The sealing ability of caprocks of both the“selfsourced indigenous”and“upper source rock-lower reservoir”assemblages has come into being earlier than or at least no later than the peak gas generation of the source rocks and therefore the caprocks are dynamically effective in geohistory.The Meso-Neoproterozoic reservoirs in the Ordos Basin are well preserved and probabally of better potential for exploration in terms of the caprock-source rock combination.展开更多
The hydraulic actuator,known as the"muscle"of military aircraft,is responsible for flight attitude adjustment,trajectory control,braking turn,landing gear retracting and other actions,which directly affect i...The hydraulic actuator,known as the"muscle"of military aircraft,is responsible for flight attitude adjustment,trajectory control,braking turn,landing gear retracting and other actions,which directly affect its flight efficiency and safety.However,the sealing assembly often has the situation of over-aberrant aperture fit clearance or critical over-aberrant clearance,which increases the failure probability and degree of movable seal failure,and directly affects the flight efficiency and safety of military aircraft.In this paper,the simulation model of hydraulic actuator seal combination is established by ANSYS software,and the sealing principle is described.The change curve of contact width and contact pressure of combination seal under the action of high-pressure fluid is drawn.The effects of different oil pressure,fit clearance and other parameters on the sealing performance are analyzed.Finally,the accelerated life test of sliding seal components is carried out on the hydraulic actuator accelerated life test rig,and the surface morphology is compared and analyzed.The research shows that the O-ring is the main sealing element and the role of the check ring is to protect and support the O-ring to prevent damage caused by squeezing into the fit clearance,so the check ring bears a large load and is prone to shear failure.Excessive fit clearance is the main factor affecting the damage of the check ring,and the damage parts are mainly concentrated at the edge of the sealing surface.This paper provides a theoretical basis for the design of hydraulic actuator and the improvement of sealing performance.展开更多
During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and proper...During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and properly evaluate air tightness of polymer sealing caverns,the air-pressure-related air density and permeability must be considered.In this context,the high-pressure air penetration in the polymer sealing layer is studied in consideration of thermodynamic change of the cavern structure during the system operation.The air tightness model of compressed air storage energy caverns is then established.In the model,the permeability coefficient and air density of sealing layer vary with air pressure,and the effectiveness of the model is verified by field data in two test caverns.Finally,a compressed air storage energy cavern is taken as an example to understand the air tightness.The air leakage rate in the caverns is larger than that using air-pressure-independent permeability coefficient and air density,which is constant and small in the previous leakage rate calculation.Under the operating pressure of 4.5-10 MPa,the daily air leakage in the compressed air storage energy cavern of Yungang Mine with high polymer butyl rubber as the sealing material is 0.62%,which can meet the sealing requirements of compressed air storage energy caverns.The air tightness of the polymer sealing cavern is mainly affected by the cavern operating pressure,injected air temperature,cavern radius,and sealing layer thickness.The cavern air leakage rate will be decreased to reduce the cavern operating pressure the injection air temperature,or the cavern radius and sealing layer thickness will be increased.展开更多
In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), fact...In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), factors influencing SE, and the effect of flowing water on propagation. The results show that grout propagation can be classified into three patterns in the fracture network: sealing off, partial sealing,and major erosion. The factors controlling the SE in a descending order of the amount of influence are the initial water flow speed, fracture aperture, grout take, and gel time. An optimal value for the combination of the gel time and grout take(artificial factors) can result in a good SE. The grouting and seepage pressures are measured, and the results reveal that their variations can indicate the SE to some extent. The SE is good when the seepage pressure at each point increases overall;the frequent fluctuations in the seepage pressure indicate a moderately poor SE, and an overall decline in the seepage pressure indicates a major erosion type. The deflection effect of grouting shows an approximately elliptical propagation with the long axis expanding along the wider fracture opening, demonstrating further application in grouting design.展开更多
Precipitation or dissolution due to geochemical reactions has been observed in the caprocks for CO_(2) geosequestration.Geochemical reactions modify the caprock sealing efficiency with self-limiting or self-enhancemen...Precipitation or dissolution due to geochemical reactions has been observed in the caprocks for CO_(2) geosequestration.Geochemical reactions modify the caprock sealing efficiency with self-limiting or self-enhancement.However,the effect of this modification on the caprock sealing efficiency has not been fully investigated through multiphysical-geochemical coupling analysis.In this study,a multiphysical-geochemical coupling model was proposed to analyze caprock sealing efficiency.This coupling model considered the full couplings of caprock deformation,two-phase flow,CO_(2) concentration diffusion,geochemical reaction,and CO_(2) sorption.The two-phase flow only occurs in the fracture network and the CO_(2) may partially dissolve into water and diffuse through the concentration difference.The dissolved CO_(2) has geochemical reactions with some critical minerals,thus altering flow channels.The CO_(2) in the fracture network diffuses into matrix,causing the matrix swelling.This fully coupling model was validated with a penetration experiment on a cement cube and compared with two other models for CO_(2) storage plumes.Finally,the effects of geochemical reactions on penetration depth and pore pressure were studied through parametric study.The numerical simulations reveal that the coupling of geochemical reactions and matrix diffusion significantly affect the caprock sealing efficiency.Geochemical reactions occur at a short time after the arrival of CO_(2) concentration and modify the fracture porosity.The CO_(2) diffusion into the matrix requires a much longer time and mainly induces matrix swelling.These effects may produce selfenhancement or self-limiting depending on the flow rate in the fracture network,thus significantly modifying caprock sealing efficiency.展开更多
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f...This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.展开更多
Recently,the Institute for Radiological protection and Nuclear Safety(IRSN)has launched VSEAL(Vertical SEALing)project to investigate the impact of gas migration on the long-term performance of bentonite based vertica...Recently,the Institute for Radiological protection and Nuclear Safety(IRSN)has launched VSEAL(Vertical SEALing)project to investigate the impact of gas migration on the long-term performance of bentonite based vertical sealing systems(VSS).The first VSEAL in situ test was emplaced in IRSN’s Underground Research Laboratory(URL)in Tournemire(France)in 2019 and was equipped with 76 wired and wireless sensors.The test is still in progress,but the collected set of data provides already valuable information of the hydro-mechanical behavior of VSS during hydration.The swelling core consists of a mixture of highdensity pellets and powder of MX80 bentonite in a ratio of 80/20(in dry mass).An innovative method was adopted to drill a 1-m diameter and w10-m deep shaft in order to minimize the rock perturbation at the sidewalls.Because a specific protocol was adopted to install the bentonite mixture together with a careful characterization of the core during construction,VSEAL 1 constitutes the unique in situ sealing test with a well-known initial structural distribution of the pellets and the powder.Some heterogeneities occurred within the experiment during the installation process:a damaged zone developed around the shaft walls due to the interruption of the installation operations caused by COVID19 lockdown in France;a technological gap with a variable thickness between the last pellets layer and the top confining lid and a heterogeneous distribution of the bentonite powder at some layers inducing large inter pellets voids close to the bentonite-rock interface.Artificially injected water volume,relative humidity,water content and swelling pressure in both radial and axial directions were monitored.Comparison of the results showed that the presence of installation-induced heterogeneities led to the generation of preferential flow paths that influenced the swelling pressure evolution at radial and axial directions.展开更多
Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD...Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD) technology in the treatment of chronic wounds. Method: From June 2021 to December 2023, our hospital treated 24 patients with chronic skin tissue wounds on their limbs using a novel tissue engineering product, the bilayer artificial dermis, in combination with VSD technology to repair the wounds. The bilayer artificial dermis protects subcutaneous tissue, blood vessels, nerves, muscles, and tendons, and also promotes the growth of granulation tissue and blood vessels to aid in wound healing when used in conjunction with VSD technology for wound dressing changes in chronic wounds. Results: In this study, 24 cases of chronic wounds with exposed bone or tendon larger than 1.0 cm2 were treated with a bilayer artificial skin combined with VSD dressing after wound debridement. The wounds were not suitable for immediate skin grafting. At 2 - 3 weeks post-treatment, good granulation tissue growth was observed. Subsequent procedures included thick skin grafting or wound dressing changes until complete wound healing. Patients were followed up on average for 3 months (range: 1 - 12 months) post-surgery. Comparative analysis of the appearance, function, skin color, elasticity, and sensation of the healed chronic wounds revealed superior outcomes compared to traditional skin fl repairs, resulting in significantly higher satisfaction levels among patients and their families. Conclusion: The application of bilayer artificial dermis combined with VSD technology for the repair of chronic wounds proves to be a viable method, yielding satisfactory therapeutic effects compared to traditional skin flap procedures.展开更多
In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the m...In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the model of underwater weapon sealing device and unstructured mesh computing domain model based on computational fluid dynamics(CFD),dynamic mesh and user defined function(UDF),the N-S equation is solved and the numerical analysis and calculation of the complex two-phase flow inside the sealing device are carried out.The results show that the gas discharged from the sealing device is conducive to the formation of the projectile supercavity.When the projectile is launched at 5munder water,the shock wave before and after the projectile has impact on the box body up to 100 MPa,therefore the sealing device must be strong enough.The research results have the vital significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation.展开更多
Meeting the demands of complex and advanced applications requires the development of high-performance hybrid materials with unique properties.However,the integration of polymeric frameworks with MgO/WO_(3) composite l...Meeting the demands of complex and advanced applications requires the development of high-performance hybrid materials with unique properties.However,the integration of polymeric frameworks with MgO/WO_(3) composite layers faces challenges due to the lack of understanding of the formation mechanism and the challenge of determining the impact of self-assembled architecture on anticorrosive properties.In this study,we aimed to enhance the corrosion resistance of the MgO layer produced by plasma electrolysis(PE)of AZ31 Mg alloy by incorporating WO_(3) with partially phosphorated poly(vinyl alcohol)(PPVA).Two types of porous MgO layers were produced using the PE process with an alkaline-phosphate electrolyte,one with and one without WO_(3) nanoparticles,which were subsequently immersed in an aqueous solution of PPVA.Incorporating PPVA into the WO_(3)-MgO layer resulted in hybrids being deposited in a fragmented manner,creating a“laminar reef-like structure”that sealed most of the structural defects in the layer.The PPVA-sealed WO_(3)-based coating exhibited superior corrosion resistance compared to the other samples.Computational analyses were employed to explore the mechanism underlying the formation of PPVA/WO_(3) hybrids on the MgO layer.These findings suggest that PPVA-WO_(3)-MgO hybrid coatings can potentially improve corrosion resistance in various fields.展开更多
Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliabl...Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.展开更多
Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic...Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic limestone reservoirs of Cretaceous in Iran-Iraq as an example,this paper proposes a balanced waterflooding development technology for thick and complex carbonate reservoirs.This technology includes the fine division of development units by concealed baffles and barriers,the combination of multi well type and multi well pattern,and the construction of balanced water injection and recovery system.Thick carbonate reservoirs in Iran-Iraq are characterized by extremely vertical heterogeneity,development of multi-genesis ultra-high permeability zones,and highly concealed baffles and barriers.Based on the technologies of identification,characterization,and sealing evaluation for concealed baffles and barriers,the balanced waterflooding development technology is proposed,and three types of balanced waterflooding development modes/techniques are formed,namely,conventional stratigraphic framework,fine stratigraphic framework,and deepened stratigraphic framework.Numerical simulations show that this technology is able to realize a fine and efficient waterflooding development to recover,in a balanced manner,the reserves of thick and complex carbonate reservoirs in Iran and Iraq.The proposed technology provides a reference for the development optimization of similar reservoirs.展开更多
Accurate classification of rice variety is essential to ensure the brand value of high-quality rice products.Considering the impact of sample state on modeling optimization algorithms,rice samples after grinding and s...Accurate classification of rice variety is essential to ensure the brand value of high-quality rice products.Considering the impact of sample state on modeling optimization algorithms,rice samples after grinding and sealing were selected.To enhance the accuracy of rice variety classification,we introduced a spectral characteristic wavelength selection method based on adaptive sliding window permutation entropy(ASW-PE).展开更多
The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components...The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.展开更多
A transition to clean hydrogen energy will not be possible until the issues related to its production, transportation,storage, etc., are adequately resolved. Currently, however, it is possible to use methane-hydrogen ...A transition to clean hydrogen energy will not be possible until the issues related to its production, transportation,storage, etc., are adequately resolved. Currently, however, it is possible to use methane-hydrogen mixtures.Natural gas can be transported using a pipeline system with the required pressure being maintained by gascompression stations. This method, however, is affected by some problems too. Compressors emergency stopscan be induced by vibrations because in some cases, mechanical methods are not able to reduce the vibrationamplitude. As an example, it is known that a gas-dynamic flow effect in labyrinth seals can lead to increasedvibrations. This paper presents the numerical simulation of rotor oscillations taking into account a gas-dynamicload. The influence of a transported mixture on the oscillatory process is investigated. Mixtures consisting ofmethane and hydrogen in various proportions and an air mixture are considered. The results are discussed forvarious operating pressures and include the rotor motion trajectories and oscillation frequency spectra obtainednumerically. It is shown that the gas mixture composition has a significant effect on the oscillations and theiroccurrence. Hydrogen as a working fluid reduces the vibration amplitude. Operating a compressor with hydrogenleads to a decrease in the resonant frequency, bringing it closer to the operating one. However, the operatingpressure at which maximum oscillations are observed depends slightly on the gas mixture composition.展开更多
文摘Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulation and the dynamic sealing capacity of UGS under intensive gas injection and withdrawal,and alternating loads.This study detailed the methodology developed by Sinopec.The approach merges disciplines like geology,geomechanics,and hydrodynamics,employing both dynamic-static and qualitative-quantitative analyses.Sinopec's evaluation methods,grounded in the in situ stress analysis,include mechanistic studies,laboratory tests,geological surveys,stress analysis,and fluid-solid interactions.Through tests on the static and dynamic sealing capacity of UGS,alongside investigations into sealing mechanisms and the geological and geomechanical properties of cap rocks and faults,A geomechanics-rock damage-seepage mechanics dynamic coupling analysis method has been developed to predict in situ stress variations relative to pore pressure changes during UGS operations and evaluate fault sealing capacity and cap rock integrity,thereby setting the maximum operational pressures.Utilizing this evaluation technique,Sinopec has defined performance metrics and criteria for evaluating the sealing capacity of depleted gas reservoirs,enabling preliminary sealing capacity evaluations at UGS sites.These evaluations have significantly informed the design of UGS construction schemes and the evaluation of fault sealing capacity and cap rock integrity during UGS operations.
文摘Elastomer sealing performance is of critical importance for downhole tools application including the use of fracturing(Frac)plugs during multi-stage hydraulic fracking.In practice sealing performances of such plugs are normally evaluated through pressure tests,and in numerical simulation studies,maximum contact stress,average contact stress and contact length data are used to determine sealing quality between a packer and casing.In previous studies,the impact of friction forces on sealing performance is often overlooked.This work aims to fill this knowledge gap in determining the influence of friction forces on elastomer packer sealing performances.We first determined the most appropriate constitutive hyperelastic model for the elastomers used in frac plug.Then we compared analytical calculation results with Finite Element Analysis simulation using a simplified tubular geometry and showed the significant influences on interfacial friction on elastomer packer stress distribution,deformation,and contact stress after setting.With the demonstration of validity of FEA method,we conducted systematic numerical simulation studies to show how the interfacial friction coefficients can affect the maximum contact stress,average contact stress,contact stress distribution,and maximum mises stress for an actual packer used in plug products.In addition,we also demonstrated how the groove in a packer can affect packer deformation and evolvement during setting with the consideration of interfacial stress.This study underscores the critical role that friction forces play in Frac plug performance and provides a new dimension for optimizing packer design by controlling interfacial interactions at the packer contact surfaces.
基金funded by the National Natural Science Foundation of China(Grant No.42172147)PetroChina Major Science and Technology Project(Grant No.ZD2019-183-002).
文摘Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Grant No.52274009)China Postdoctoral Science Foundation(Grant No.2022M723501)Science and Technology Planning Project of Sichuan Province(Grant No.2021YJ0359).
文摘Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulation.However,conventional LCMs seem ineffective in high-temperature formations.This may be due to the changes in the mechanical properties of LCMs and their sealing performance under high-temperature conditions.To understand how high temperature affects the fracture sealing performance of LCMs,we developed a coupled computational fluid dynamics-discrete element method(CFD-DEM)model to simulate the behavior of granular LCMs in fractures.We summarized the literature on the effects of high temperature on the mechanical properties of LCMs and the rheological properties of drilling fluid.We conducted sensitivity analyses to investigate how changing LCM slurry properties affected the fracture sealing efficiency at increasing temperatures.The results show that high temperature reduces the size,strength,and friction coefficient of LCMs as well as the drilling fluid viscosity.Smaller,softer,and less frictional LCM particles have lower bridging probability and slower bridging initiation.Smaller particles tend to form dual-particle bridges rather than single-particle bridges.These result in a deeper,tighter,but unstable sealing zone.Reduced drilling fluid viscosity leads to faster and shallower sealing zones.
基金supported by the National Key R&D Program of China grant(2017YFC0603105).
文摘The Meso-Neoproterozoic is a new play in the Ordos Basin.A deeper understanding about the dynamic relationship between the caprocks and the source rocks is needed.Based on the comprehensive analysis of hydrocarbon source development characteristics of the Meso-Neoproterozoic and its overlying strata,as well as the formation contact relationships,lithology characteristics and exploratory drilling data,it is recognized that the Meso-Neoproterozoic contains two types of petroleum accumulation assemblage,that is,the“self-sourced indigenous”and“upper source rock-lower reservoir”assemblages.The former is mainly controlled by the development and distribution of source rocks of the Changcheng System,with the Lower Cambrian shale sequence as its caprock.The later is controlled by the superposition between the Meso-Neoproterozoic and its overlying source rocks and this assemblage is mainly distributed in Hangjinqi and Pingliang areas with the Carboniferous-Permian shale sequence as its caprock.The dynamic evaluation on the displacement pressure serves to reconstruct the displacement pressure history of the caprock.The results show that the shale sequence of the Cambrian Maozhuang Formation in well XY 1 in the southern Ordos Basin has possibly acquired the ability of sealing natural gas since the early of Late Triassic.Its displacement pressure increased rapidly up to 20 MPa during the Late Triassic-Jurassic and keeps at 9.2 MPa at present,indicating fair sealing ability.The Carboniferous-Permian caprocks in Hangjinqi area could have acquired the ability to seal natural gas in the Late Jurassic-Early Cretaceous,and the present-day displacement pressure is 9e12 MPa,indicating good sealing ability.The upper Paleozoic caprock in Pingliang area has been able to seal natural gas since the Early Jurassic,with a maximum displacement pressure of 23 MPa during the Cretaceous period and a current value of 17 e20 MPa,indicative of strong ability to seal natural gas.The sealing ability of caprocks of both the“selfsourced indigenous”and“upper source rock-lower reservoir”assemblages has come into being earlier than or at least no later than the peak gas generation of the source rocks and therefore the caprocks are dynamically effective in geohistory.The Meso-Neoproterozoic reservoirs in the Ordos Basin are well preserved and probabally of better potential for exploration in terms of the caprock-source rock combination.
基金the qualification of school-enterprise cooperation project,the project name:"Failure Mechanism Analysis and life Prediction of Hydraulic actuator sliding seal Assembly",funded by"Shijiazhuang Haishan Industrial Development Corporation",project number(AF21E20211158).
文摘The hydraulic actuator,known as the"muscle"of military aircraft,is responsible for flight attitude adjustment,trajectory control,braking turn,landing gear retracting and other actions,which directly affect its flight efficiency and safety.However,the sealing assembly often has the situation of over-aberrant aperture fit clearance or critical over-aberrant clearance,which increases the failure probability and degree of movable seal failure,and directly affects the flight efficiency and safety of military aircraft.In this paper,the simulation model of hydraulic actuator seal combination is established by ANSYS software,and the sealing principle is described.The change curve of contact width and contact pressure of combination seal under the action of high-pressure fluid is drawn.The effects of different oil pressure,fit clearance and other parameters on the sealing performance are analyzed.Finally,the accelerated life test of sliding seal components is carried out on the hydraulic actuator accelerated life test rig,and the surface morphology is compared and analyzed.The research shows that the O-ring is the main sealing element and the role of the check ring is to protect and support the O-ring to prevent damage caused by squeezing into the fit clearance,so the check ring bears a large load and is prone to shear failure.Excessive fit clearance is the main factor affecting the damage of the check ring,and the damage parts are mainly concentrated at the edge of the sealing surface.This paper provides a theoretical basis for the design of hydraulic actuator and the improvement of sealing performance.
基金We acknowledge the funding support from the National Science Foundation of China(Grant No.52278402)the Young Scientist Project of the National Key Research and Development Program of China(Grant No.2021YFC2900600)the Fundamental Research Funds for the Central Universities of China(Grant No.22120220117).
文摘During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and properly evaluate air tightness of polymer sealing caverns,the air-pressure-related air density and permeability must be considered.In this context,the high-pressure air penetration in the polymer sealing layer is studied in consideration of thermodynamic change of the cavern structure during the system operation.The air tightness model of compressed air storage energy caverns is then established.In the model,the permeability coefficient and air density of sealing layer vary with air pressure,and the effectiveness of the model is verified by field data in two test caverns.Finally,a compressed air storage energy cavern is taken as an example to understand the air tightness.The air leakage rate in the caverns is larger than that using air-pressure-independent permeability coefficient and air density,which is constant and small in the previous leakage rate calculation.Under the operating pressure of 4.5-10 MPa,the daily air leakage in the compressed air storage energy cavern of Yungang Mine with high polymer butyl rubber as the sealing material is 0.62%,which can meet the sealing requirements of compressed air storage energy caverns.The air tightness of the polymer sealing cavern is mainly affected by the cavern operating pressure,injected air temperature,cavern radius,and sealing layer thickness.The cavern air leakage rate will be decreased to reduce the cavern operating pressure the injection air temperature,or the cavern radius and sealing layer thickness will be increased.
基金supported by the Natural Science Foundation of China under (Nos. 42172293, 4190020747, and 41472268)。
文摘In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), factors influencing SE, and the effect of flowing water on propagation. The results show that grout propagation can be classified into three patterns in the fracture network: sealing off, partial sealing,and major erosion. The factors controlling the SE in a descending order of the amount of influence are the initial water flow speed, fracture aperture, grout take, and gel time. An optimal value for the combination of the gel time and grout take(artificial factors) can result in a good SE. The grouting and seepage pressures are measured, and the results reveal that their variations can indicate the SE to some extent. The SE is good when the seepage pressure at each point increases overall;the frequent fluctuations in the seepage pressure indicate a moderately poor SE, and an overall decline in the seepage pressure indicates a major erosion type. The deflection effect of grouting shows an approximately elliptical propagation with the long axis expanding along the wider fracture opening, demonstrating further application in grouting design.
基金National Natural Science Foundation of China,Grant/Award Number:51674246Creative Research and Development Group Program of Jiangsu Province,Grant/Award Number:2014-27。
文摘Precipitation or dissolution due to geochemical reactions has been observed in the caprocks for CO_(2) geosequestration.Geochemical reactions modify the caprock sealing efficiency with self-limiting or self-enhancement.However,the effect of this modification on the caprock sealing efficiency has not been fully investigated through multiphysical-geochemical coupling analysis.In this study,a multiphysical-geochemical coupling model was proposed to analyze caprock sealing efficiency.This coupling model considered the full couplings of caprock deformation,two-phase flow,CO_(2) concentration diffusion,geochemical reaction,and CO_(2) sorption.The two-phase flow only occurs in the fracture network and the CO_(2) may partially dissolve into water and diffuse through the concentration difference.The dissolved CO_(2) has geochemical reactions with some critical minerals,thus altering flow channels.The CO_(2) in the fracture network diffuses into matrix,causing the matrix swelling.This fully coupling model was validated with a penetration experiment on a cement cube and compared with two other models for CO_(2) storage plumes.Finally,the effects of geochemical reactions on penetration depth and pore pressure were studied through parametric study.The numerical simulations reveal that the coupling of geochemical reactions and matrix diffusion significantly affect the caprock sealing efficiency.Geochemical reactions occur at a short time after the arrival of CO_(2) concentration and modify the fracture porosity.The CO_(2) diffusion into the matrix requires a much longer time and mainly induces matrix swelling.These effects may produce selfenhancement or self-limiting depending on the flow rate in the fracture network,thus significantly modifying caprock sealing efficiency.
基金financially supported by the National Natural Science Foundation of China (No. 52174131)
文摘This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.
文摘Recently,the Institute for Radiological protection and Nuclear Safety(IRSN)has launched VSEAL(Vertical SEALing)project to investigate the impact of gas migration on the long-term performance of bentonite based vertical sealing systems(VSS).The first VSEAL in situ test was emplaced in IRSN’s Underground Research Laboratory(URL)in Tournemire(France)in 2019 and was equipped with 76 wired and wireless sensors.The test is still in progress,but the collected set of data provides already valuable information of the hydro-mechanical behavior of VSS during hydration.The swelling core consists of a mixture of highdensity pellets and powder of MX80 bentonite in a ratio of 80/20(in dry mass).An innovative method was adopted to drill a 1-m diameter and w10-m deep shaft in order to minimize the rock perturbation at the sidewalls.Because a specific protocol was adopted to install the bentonite mixture together with a careful characterization of the core during construction,VSEAL 1 constitutes the unique in situ sealing test with a well-known initial structural distribution of the pellets and the powder.Some heterogeneities occurred within the experiment during the installation process:a damaged zone developed around the shaft walls due to the interruption of the installation operations caused by COVID19 lockdown in France;a technological gap with a variable thickness between the last pellets layer and the top confining lid and a heterogeneous distribution of the bentonite powder at some layers inducing large inter pellets voids close to the bentonite-rock interface.Artificially injected water volume,relative humidity,water content and swelling pressure in both radial and axial directions were monitored.Comparison of the results showed that the presence of installation-induced heterogeneities led to the generation of preferential flow paths that influenced the swelling pressure evolution at radial and axial directions.
文摘Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD) technology in the treatment of chronic wounds. Method: From June 2021 to December 2023, our hospital treated 24 patients with chronic skin tissue wounds on their limbs using a novel tissue engineering product, the bilayer artificial dermis, in combination with VSD technology to repair the wounds. The bilayer artificial dermis protects subcutaneous tissue, blood vessels, nerves, muscles, and tendons, and also promotes the growth of granulation tissue and blood vessels to aid in wound healing when used in conjunction with VSD technology for wound dressing changes in chronic wounds. Results: In this study, 24 cases of chronic wounds with exposed bone or tendon larger than 1.0 cm2 were treated with a bilayer artificial skin combined with VSD dressing after wound debridement. The wounds were not suitable for immediate skin grafting. At 2 - 3 weeks post-treatment, good granulation tissue growth was observed. Subsequent procedures included thick skin grafting or wound dressing changes until complete wound healing. Patients were followed up on average for 3 months (range: 1 - 12 months) post-surgery. Comparative analysis of the appearance, function, skin color, elasticity, and sensation of the healed chronic wounds revealed superior outcomes compared to traditional skin fl repairs, resulting in significantly higher satisfaction levels among patients and their families. Conclusion: The application of bilayer artificial dermis combined with VSD technology for the repair of chronic wounds proves to be a viable method, yielding satisfactory therapeutic effects compared to traditional skin flap procedures.
基金National Natural Science Foundation of China(No.51175481)
文摘In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the model of underwater weapon sealing device and unstructured mesh computing domain model based on computational fluid dynamics(CFD),dynamic mesh and user defined function(UDF),the N-S equation is solved and the numerical analysis and calculation of the complex two-phase flow inside the sealing device are carried out.The results show that the gas discharged from the sealing device is conducive to the formation of the projectile supercavity.When the projectile is launched at 5munder water,the shock wave before and after the projectile has impact on the box body up to 100 MPa,therefore the sealing device must be strong enough.The research results have the vital significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(no.2022R1A2C1006743)。
文摘Meeting the demands of complex and advanced applications requires the development of high-performance hybrid materials with unique properties.However,the integration of polymeric frameworks with MgO/WO_(3) composite layers faces challenges due to the lack of understanding of the formation mechanism and the challenge of determining the impact of self-assembled architecture on anticorrosive properties.In this study,we aimed to enhance the corrosion resistance of the MgO layer produced by plasma electrolysis(PE)of AZ31 Mg alloy by incorporating WO_(3) with partially phosphorated poly(vinyl alcohol)(PPVA).Two types of porous MgO layers were produced using the PE process with an alkaline-phosphate electrolyte,one with and one without WO_(3) nanoparticles,which were subsequently immersed in an aqueous solution of PPVA.Incorporating PPVA into the WO_(3)-MgO layer resulted in hybrids being deposited in a fragmented manner,creating a“laminar reef-like structure”that sealed most of the structural defects in the layer.The PPVA-sealed WO_(3)-based coating exhibited superior corrosion resistance compared to the other samples.Computational analyses were employed to explore the mechanism underlying the formation of PPVA/WO_(3) hybrids on the MgO layer.These findings suggest that PPVA-WO_(3)-MgO hybrid coatings can potentially improve corrosion resistance in various fields.
基金funded by the National Natural Science(Grant No.52274015)。
文摘Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.
基金Supported by the Major Science and Technology Project of CNPC(2023ZZ19-01).
文摘Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic limestone reservoirs of Cretaceous in Iran-Iraq as an example,this paper proposes a balanced waterflooding development technology for thick and complex carbonate reservoirs.This technology includes the fine division of development units by concealed baffles and barriers,the combination of multi well type and multi well pattern,and the construction of balanced water injection and recovery system.Thick carbonate reservoirs in Iran-Iraq are characterized by extremely vertical heterogeneity,development of multi-genesis ultra-high permeability zones,and highly concealed baffles and barriers.Based on the technologies of identification,characterization,and sealing evaluation for concealed baffles and barriers,the balanced waterflooding development technology is proposed,and three types of balanced waterflooding development modes/techniques are formed,namely,conventional stratigraphic framework,fine stratigraphic framework,and deepened stratigraphic framework.Numerical simulations show that this technology is able to realize a fine and efficient waterflooding development to recover,in a balanced manner,the reserves of thick and complex carbonate reservoirs in Iran and Iraq.The proposed technology provides a reference for the development optimization of similar reservoirs.
基金supported by the National Natural Science Foundation of China(Grant No.61975028)the Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2022E004)the Postdoctoral Foundation of Heilongjiang Province,China(Grant No.LBH-Z22057).
文摘Accurate classification of rice variety is essential to ensure the brand value of high-quality rice products.Considering the impact of sample state on modeling optimization algorithms,rice samples after grinding and sealing were selected.To enhance the accuracy of rice variety classification,we introduced a spectral characteristic wavelength selection method based on adaptive sliding window permutation entropy(ASW-PE).
基金Supported by Research Foundation of CLEP of China (Grant No.TY3Q20110003)。
文摘The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.
基金the Russian Ministry of Education and Science,Project FSNM-2023-0004“Hydrogen Energy.Materials and Technology for Storage,Transportation and Use of Hydrogen and Hydrogen-Containing Mixtures”.
文摘A transition to clean hydrogen energy will not be possible until the issues related to its production, transportation,storage, etc., are adequately resolved. Currently, however, it is possible to use methane-hydrogen mixtures.Natural gas can be transported using a pipeline system with the required pressure being maintained by gascompression stations. This method, however, is affected by some problems too. Compressors emergency stopscan be induced by vibrations because in some cases, mechanical methods are not able to reduce the vibrationamplitude. As an example, it is known that a gas-dynamic flow effect in labyrinth seals can lead to increasedvibrations. This paper presents the numerical simulation of rotor oscillations taking into account a gas-dynamicload. The influence of a transported mixture on the oscillatory process is investigated. Mixtures consisting ofmethane and hydrogen in various proportions and an air mixture are considered. The results are discussed forvarious operating pressures and include the rotor motion trajectories and oscillation frequency spectra obtainednumerically. It is shown that the gas mixture composition has a significant effect on the oscillations and theiroccurrence. Hydrogen as a working fluid reduces the vibration amplitude. Operating a compressor with hydrogenleads to a decrease in the resonant frequency, bringing it closer to the operating one. However, the operatingpressure at which maximum oscillations are observed depends slightly on the gas mixture composition.