期刊文献+
共找到35,764篇文章
< 1 2 250 >
每页显示 20 50 100
Friction Characteristics of Mechanical Seals with Laser-textured Seal Faces 被引量:9
1
作者 YU Xin-qi 1,2, HE Song 1, CAI Ren-ling 1 (1. Research Institute of Pressure Vessel and Process Equi pment, East China University of Science and Technology, Shanghai 200237, China 2. College of Mechanical Science and Engineering, Hebei University of Science an d Technology, Shijiazhuang 050018, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期157-,共1页
Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry a... Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry and vaporize the sealing fluid, resulting in friction of boundary lubrication. These effects on face seals usually lead to excessive leakage and ultimately ren der the seal inoperable. In order to maintain the reliability of seals, high fri ction and unwanted wear must be avoided. Using the laser-texturing process to produce regular micro-surface structures is a fast and convenient technique compared to some more conventional etching or erosion technique currently used by the seal industry for various grooved face seals. Indeed, by using a pulse laser, better control is obtained on the geometr y, size and pore ratio of seal rings made of metallic or ceramic materials. In t his study, seal rings are made of silicon carbide and carbon. Mating faces of th e rings are polished and only silicon carbide rings are laser-textured. The las er texturing can be controlled to produce spherical pores at selected diameters, depths and pore ratio. The textured rings are then super-polished to remove th e bulges formed on the pores rims. After this process the average pore diameter, pore depth and pore ratio reach the predetermined parameter. Some untextured ri ngs are also treated to the same surface roughness and served as a reference for comparison of the textured rings. A special test rig is used to simulate a mech anical seal system and to measure the effect of the laser texturing on friction and seal performance. Tests are performed at various rotational speeds and vario us axial loads. Compared with the conventional mechanical seals, temperature rise, friction torq ue and friction coefficient of mechanical seals with laser-textured seal faces are much lower. These preliminary results show the potential of improving fricti on performance and increasing seal life with laser-textured seal faces. 展开更多
关键词 LASER mechanical seals friction characteristics hydrodynamic effects
下载PDF
Tribological Properties and Failure Analysis of PTFE Composites used for Seals in the Transmission Unit 被引量:5
2
作者 宫燃 WAN Xiaojin ZHANG Xuerong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期26-30,共5页
The sealing rings are one of the most important components as the sealing devices in the wet clutch unit of a heavy vehicle. The sealing ring, made from PTFE composites, was subjected to serious wear on the sealing su... The sealing rings are one of the most important components as the sealing devices in the wet clutch unit of a heavy vehicle. The sealing ring, made from PTFE composites, was subjected to serious wear on the sealing surface, but the mating metal surface only had slight abrasion. A specialized test rig was designed for wear research and failure analysis of the sealing ring. The composition analyses of the ring material, working conditions and wear surface characteristics by visual inspection and tribological properties as well as microscopic analysis with scanning electron microscope was performed to determine the wear mechanism and failure causes. Results revealed that the wear of PTFE composites was characterized by abrasion and adhesion after a certain duration testing, and the wear mechanism changed to thermal fatigue and abrasive wear in the stage of intense wear. The thermal deformation and fatigue were primarily responsible for the rapid wear of the PTFE composites for the sealing rings. 展开更多
关键词 PTFE composite tribological properties seals failure analysis thermal effects
下载PDF
Influence Analysis of Secondary O-ring Seals in Dynamic Behavior of Spiral Groove Gas Face Seals 被引量:15
3
作者 HU Songtao HUANG Weifeng +1 位作者 LIU Xiangfeng WANG Yuming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期507-514,共8页
The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face se... The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face seals is lacking. In particular a transient study and a difference analysis of steady-state and transient performance are imperative. In this paper, a case study is performed to gauge the effect of secondary O-ring seals on the dynamic behavior(steady-state performance and transient performance) of face seals. A numerical finite element method(FEM) model is developed for the dynamic analysis of spiral groove gas face seals with a flexibly mounted stator in the axial and angular modes. The rotor tilt angle, static stator tilt angle and O-ring damping are selected to investigate the effect of O-ring seals on face seals during stable running operation. The results show that the angular factor can be ignored to save time in the simulation under small damping or undamped conditions. However, large O-ring damping has an enormous effect on the angular phase difference of mated rings, affecting the steady-state performance of face seals and largely increasing the possibility of face contact that reduces the service life of face seals. A pressure drop fluctuation is carried out to analyze the effect of O-ring seals on the transient performance of face seals. The results show that face seals could remain stable without support stiffness and O-ring damping during normal stable operation but may enter a large-leakage state when confronting instantaneous fluctuations. The oscillation-amplitude shortening effect of O-ring damping on the axial mode is much greater than that on the angular modes and O-ring damping prefers to cater for axial motion at the cost of angular motion. This research proposes a detailed dynamic-property study of O-ring seals in spiral groove gas face seals, to assist in the design of face seals. 展开更多
关键词 spiral groove gas face seal secondary O-ring seals dynamic property
下载PDF
STUDY ON RECIPROCATING SEALS FOR A LARGER DIAMETER AXIAL PISTON 被引量:2
4
作者 YangJian YangHuayong XuBing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期152-155,共4页
Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, re... Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, reasonable boundary conditions for Navier-Stokesequations are determined and the equations are modified, so that the final equations can describethe real flow state of the clearance flow. Through combining the final equations with finite elementmethod, the pressure distributions within the clearance field during the reciprocating motion ofthe piston and the leakage rate with the pressure are studied. The deflections of the seal whichaffect sealing performance are calculated as well. Sealing performance of piston seals using oil asthe working liquid is compared with using water. It is concluded that the seal using water as theworking liquid is under dry friction, which cannot be dealt with the theory of fluid mechanics. Theseal structure is only acceptable using oil as the working liquid.. 展开更多
关键词 Larger diameter axial piston Reciprocating seals Sealing performance
下载PDF
Coaxial Twin-shaft Magnetic Fluid Seals Applied in Vacuum Wafer-Handling Robot 被引量:2
5
作者 CONG Mingt WEN Haiying +1 位作者 DU yu DAI Penglei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期706-714,共9页
Compared with traditional mechanical seals,magnetic fluid seals have unique characters of high airtightness,minimal friction torque requirements,pollution-free and long life-span,widely used in vacuum robots.With the ... Compared with traditional mechanical seals,magnetic fluid seals have unique characters of high airtightness,minimal friction torque requirements,pollution-free and long life-span,widely used in vacuum robots.With the rapid development of Integrate Circuit(IC),there is a stringent requirement for sealing wafer-handling robots when working in a vacuum environment.The parameters of magnetic fluid seals structure is very important in the vacuum robot design.This paper gives a magnetic fluid seal device for the robot.Firstly,the seal differential pressure formulas of magnetic fluid seal are deduced according to the theory of ferrohydrodynamics,which indicate that the magnetic field gradient in the sealing gap determines the seal capacity of magnetic fluid seal.Secondly,the magnetic analysis model of twin-shaft magnetic fluid seals structure is established.By analyzing the magnetic field distribution of dual magnetic fluid seal,the optimal value ranges of important parameters,including parameters of the permanent magnetic ring,the magnetic pole tooth,the outer shaft,the outer shaft sleeve and the axial relative position of two permanent magnetic rings,which affect the seal differential pressure,are obtained.A wafer-handling robot equipped with coaxial twin-shaft magnetic fluid rotary seals and bellows seal is devised and an optimized twin-shaft magnetic fluid seals experimental platform is built.Test result shows that when the speed of the two rotational shafts ranges from 0-500 r/min,the maximum burst pressure is about 0.24 MPa.Magnetic fluid rotary seals can provide satisfactory performance in the application of wafer-handling robot.The proposed coaxial twin-shaft magnetic fluid rotary seal provides the instruction to design high-speed vacuum robot. 展开更多
关键词 magnetic fluid seals coaxial twin-shaft magnetic field wafer handling robot
下载PDF
Study of Seals on Long Stroke and Reciprocating Motion Condition 被引量:1
6
作者 Zhaoxia Wang Yujie Zhi +3 位作者 Chengyong Hu Jinlu Xi Jing Hu Jie An 《Journal of Power and Energy Engineering》 2013年第7期40-44,共5页
The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the u... The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the underground part of hydraulic power rodless type oil extraction equipment is studied. We design three seal structures, do the performance testing and the life testing with related equipment. It turned out that the seal form that combines gap seal with sand prevention techniques has high performance, longer life. The power cylinder works stably and reliably. 展开更多
关键词 Dynamic seals LONG STROKE Reciprocating Motion GAP SEAL Composite SEAL
下载PDF
Homogenization in clay barriers and seals:Two case studies
7
作者 A.Gens B.Valleján +1 位作者 M.T.Zandarín M.Sánchez 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第3期191-199,共9页
The paper presents two case studies that provide information on the process of homogenization of initially heterogeneous clay barriers and seals. The first case is the canister retrieval test performed in the Asp0 Har... The paper presents two case studies that provide information on the process of homogenization of initially heterogeneous clay barriers and seals. The first case is the canister retrieval test performed in the Asp0 Hard Rock Laboratory (Sweden). The heterogeneity arises from the use of a combination of blocks and pellets to construct the engineered barrier. The degree of homogenization achieved by the end of the tests is evaluated from data obtained during the dismantling of the test. To assist in the interpretation of the test, a fully coupled thermo-hydro-mechanical (THM) analysis has been carried out. The second case involves the shaft sealing test performed in the HADES underground research laboratory (URL) in Mol (Belgium). Here the seal is made up of a heterogeneous mixture of bentonite pellets and bentonite powders. In addition to the full scale test, the process of homogenization of the mixture has also been observed in the laboratory using X-ray tomography. Both field test and laboratory tests are successfully modelled by a coupled hydro-mechanical (HM) analysis using a double structure constitutive law. The paper concludes with some considerations on the capability of highly expansive materials to provide a significant degree of homogenization upon hydration. 展开更多
关键词 Nuclear waste disposal Clay barriers Clay seals HETEROGENEITY Compacted soils Coupled analyses Unsaturated soils
下载PDF
Transient Simulation on Dynamic Response of Liquid Annular Seals
8
作者 Li Song Pingwei Chen +1 位作者 Tong Wang Wensheng Ma 《Journal of Management Science & Engineering Research》 2020年第1期23-27,共5页
Transient change of the operating parameters has a serious influence on the stability of liquid annular seals.Take the liquid annular seals as a research object,a numerical method based on six-degree-of-freedom(6DOF)t... Transient change of the operating parameters has a serious influence on the stability of liquid annular seals.Take the liquid annular seals as a research object,a numerical method based on six-degree-of-freedom(6DOF)to analyze the dynamic response of liquid annular seals under gravity impact load.The variations of the force of liquid seal and pressure as well as the axis trajectory in time history are investigated.The influence of different sealing clearance,different liquid viscosity and different rotor speed is also studied.The results show that the maximum sealing pressure and sealing force of gravity direction will increase greatly in a very short time and then reduce rapidly.When sealing clearance increases,the displacement response amplitudes of axis trajectory,the maximum sealing force of gravity direction and maximum sealing pressure also increase.When liquid viscosity increases,the displacement response amplitudes of axis trajectory,the maximum sealing force of gravity direction and maximum sealing pressure decrease.We also found that different rotor speed has almost no influence on the maximum sealing force of gravity direction and maximum sealing pressure. 展开更多
关键词 Annular seals Transient impact load 6DOF Axis trajectory Seal pressure
下载PDF
Thermal-Mechanical Coupled FE Analysis for Rotary Shaft Seals
9
作者 Gyorgy Szabó Károly Váradi 《Modern Mechanical Engineering》 2018年第1期95-110,共16页
The aim of this paper is to model the steady-state condition of a rotary shaft seal (RSS) system. For this, an iterative thermal-mechanical algorithm was developed based on incremental finite element analyzes. The beh... The aim of this paper is to model the steady-state condition of a rotary shaft seal (RSS) system. For this, an iterative thermal-mechanical algorithm was developed based on incremental finite element analyzes. The behavior of the seal’s rubber material was taken into account by a large-strain viscoelastic, so called generalized Maxwell model, based on Dynamic Mechanical Thermal Analyses (DMTA) and tensile measurements. The pre-loaded garter spring was modelled with a bilinear material model and the shaft was assumed to be linear elastic. The density, coefficient of thermal expansion and the thermal conductance of the materials were taken into consideration during simulation. The friction between the rotary shaft seal and the shaft was simplified and modelled as a constant parameter. The iterative algorithm was evaluated at two different times, right after assembly and 1 h after assembly, so that rubber material’s stress relaxation effects are also incorporated. The results show good correlation with the literature data, which state that the permissible temperature for NBR70 (nitrile butadiene rubber) material contacting with ~80 mm shaft diameter, rotating at 2600/min is 100°C. The results show 107°C and 104°C for the two iterations. The effect of friction induced temperature, changes the width of the contact area between the seal and the shaft, and significantly reduces the contact pressure. 展开更多
关键词 Coupled FE Analysis Thermal-Mechanical Coupling Rotary Shaft seals NBR Rubber VISCOELASTICITY
下载PDF
ANCIENT TIBETAN SEALS
10
作者 ZOU XICHENG 《China's Tibet》 2007年第5期24-29,共6页
In Tibetan,the name for a seal is Thangka.According to records,the word originates from Turkish,initially borrowing from Mongolian and finally absorbed into Tibetan.Various names were given to seals in Tibetan.Officia... In Tibetan,the name for a seal is Thangka.According to records,the word originates from Turkish,initially borrowing from Mongolian and finally absorbed into Tibetan.Various names were given to seals in Tibetan.Official seals are generally named Thangka,or Kathang in honorific dialect;personal seals referred to as Gyithang;general seals are called Dathang or Sethang. 展开更多
关键词 ANCIENT TIBETAN seals
下载PDF
Wolfe Family Collection of Near Eastern Prehistoric Stamp Seals
11
作者 ShuaAmorai-Stark 《Journal of Ancient Civilizations》 1998年第0期139-140,共2页
关键词 STARK Wolfe Family Collection of Near Eastern Prehistoric Stamp seals
下载PDF
Leakage Prediction Method for Contacting Mechanical Seals with Parallel Faces 被引量:17
12
作者 SUN Jianjun WEI Long +1 位作者 FENG Xiu GU Boqin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期7-15,共9页
Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the la... Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the lack of the way to characterize the main factors of influence on the leakage, most of the early researches were based on the assumptions that the seal faces topography and the frictional conditions were invariant. In the early built models, the effect of the surface topography change of the seal face on the leakage rate was neglected. Based on the fractal theory, the contact of end faces of the rotary and stationary rings was simplified to be the contact of a rough surface and an ideal rigid smooth surface, and the contact interface's cavity size-distribution function as well as the fractal characteristic of the cavity profile curve was discussed. By analyzing the influence of abrasion on the seal face topography and the leakage channel, the time-correlation leakage prediction model of mechanical seals based on the fractal theory was established and the method for predicting the leakage rate of mechanical seals with parallel plane was proposed. The values of the leakage rate predicted theoretically are similar to the measured values of the leakage rate in the model test and in situ test. The experimental results indicate that the leakage rate of mechanical seals is a transient value. The surface topography of the end faces of the seal tings and its change during the frictional wear of mechanical seals can be accurately characterized by the fractal parameters. Under the work conditions of changeless frictional mechanism, the fractal parameters measured or calculated based on the accelerated testing equation can be used to predict the leakage rate of mechanical seal in service. The proposed research provides the basis for determining the leakage state and predicting working life of mechanical seal. 展开更多
关键词 mechanical seal leakage rate fractal theory frictional wear accelerated test model
下载PDF
Effect of Honeycomb Seals on Loss Characteristics in Shroud Cavities of an Axial Turbine 被引量:15
13
作者 GAO Jie ZHENG Qun WANG Zheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期69-77,共9页
The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to opti... The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to optimize turbomachinery. At present, little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine, despite of the widespread use of the honeycomb seals. Therefore, interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow. The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed. An additional study on the impact of subtle shroud cavity exit geometry is also presented. The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal. The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions. The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry, and it is helpful for the design optimization of turbomachinery. 展开更多
关键词 tip leakage flow honeycomb seal mixing losses exit cavity geometry
下载PDF
ART ON SEALS IN ANCIENT TIBET
14
作者 ZHOU XICHENG 《China's Tibet》 2007年第1期42-45,共4页
Tibetan archaic seals have been a significant element of Tibetan art and civilization for over 2000 years, embodying the rich, historic Tibetan culture.
关键词 ART ON seals IN ANCIENT TIBET
下载PDF
Thermal Fluid-Solid Interaction Model and Experimental Validation for Hydrostatic Mechanical Face Seals 被引量:10
15
作者 HUANG Weifeng LIAO Chuanjun +3 位作者 LIU Xiangfeng SUO Shuangfu LIU Ying WANG Yuming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期949-957,共9页
Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are ... Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments. 展开更多
关键词 mechanical face seal HYDROSTATIC thermal fluid–solid interaction EXPERIMENT
下载PDF
INVESTIGATION INTO EFFECT OF SPRING PRESSURE ON PERFORMANCE OF BALANCED MECHANICAL SEALS 被引量:7
16
作者 SUN Jianjun GU Boqin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期39-43,共5页
The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leak... The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leakage model of balanced mechanical seals is established on the base of M-B model for rough surface. Several GY-70 type balanced mechanical seals are tested. The influences of the spring pressure both on the leakage rate and on the friction characteristic of balanced mechanical seals are investigated. The research results indicate that as spring pressure increases, both the clear-ance between two end faces and the leakage rate will decrease, and the friction will be more serious because lubrication medium between the rotating ring and the stationary ring reduces, though the increase of the spring pressure may not be enough to change the face friction state of mechanical seals. There exists an optimum spring pressure for mechanical seal operation. Under this spring pres-sure, not only leakage rate is small, but also the seal end surfaces have a fine friction characteristic. Under different operating conditions, identical type mechanical seals may possess different spring pressure. Appropriate selection of spring pressure is valuable to realize long-period and small leakage rate operating of balanced mechanical seals. 展开更多
关键词 Balanced mechanical seal Spring pressure Leakage rate Friction characteristic Fractal geometry
下载PDF
Gold Seals Bestowed tothe Dalai and the Bainqen
17
《China's Tibet》 1995年第S1期30-31,共2页
GoldSealsBestowedtotheDalaiandtheBainqen¥GoldsealswerefirstmadeintheearlyperiodoftheTuboKingdominTibetinthe8... GoldSealsBestowedtotheDalaiandtheBainqen¥GoldsealswerefirstmadeintheearlyperiodoftheTuboKingdominTibetinthe8thcenturyDuringth... 展开更多
关键词 Gold seals Bestowed tothe Dalai and the Bainqen
下载PDF
Fluid-solid Interaction Model for Hydraulic Reciprocating O-ring Seals 被引量:11
18
作者 LIAO Chuanjun HUANG Weifeng +2 位作者 WANG Yuming SUO Shuangfu LIU Ying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期85-94,共10页
Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. On... Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals. 展开更多
关键词 reciprocating O-ring seal elastohydrodynamic lubrication finite-element method fluid-solid interaction mixed lubrication SRV friction and wear tester
下载PDF
Application of Fractal Contact Model in Dynamic Performance Analysis of Gas Face Seals 被引量:3
19
作者 Song-Tao Hu Wei-Feng Huang +1 位作者 Xiang-Feng Liu Yu-Ming Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期137-147,共11页
Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. Th... Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. The present study introduces the fractal theory into the dynamic research of gas face seals under face?contacting conditions. Structure?Function method is adopted to handle the surface profiles of typical carbon?graphite rings, proving the fractal con?tact model can be used in the field of gas face seals. Using a numerical model established for the dynamic analyses of a spiral groove gas face seal with a flexibly mounted stator, a comparison of dynamic performance between the Majumdar?Bhushan(MB) fractal model and the Chang?Etsion?Bogy(CEB) statistical model is performed. The result shows that the two approaches induce differences in terms of the occurrence and the level of face contact. Although the approach distinctions in film thickness and leakage rate can be tiny, the distinctions in contact mechanism and end face damage are obvious. An investigation of fractal parameters D and G shows that a proper D(nearly 1.5) and a small G are helpful in raising the proportion of elastic deformation to weaken the adhesive wear in the sealing dynamic performance. The proposed research provides a fractal approach to design gas face seals. 展开更多
关键词 Fractal theory Asperity contact Gas face seal Dynamic performance
下载PDF
Matched glass-to-Kovar seals in N_2 and Ar atmospheres 被引量:2
20
作者 Cheng-hsien Kuo Pi-ying Cheng Chang-pin Chou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第9期874-882,共9页
The oxidation of Kovar alloy was investigated, the wetting and spreading behavior of hard and soft glasses on Kovar alloy were studed by using the sessile drop method, and the quality and the seal strength of glass-Ko... The oxidation of Kovar alloy was investigated, the wetting and spreading behavior of hard and soft glasses on Kovar alloy were studed by using the sessile drop method, and the quality and the seal strength of glass-Kovar seals were tested. The experimental results indicated that the preoxidation of Kovar alloy for approximately 10 min at 700℃ in air resulted in excellent adherence in glass-Kovar seals. The wetting and spreading behavior of glass on preoxidized Kovar alloy were superior to that on nonoxidized Kovar alloy. The wetting ability of ASF110 glass, at 950℃ and 980℃ in Ar and N2 atmospheres, was significantly superior to that of ASF200R and ASF700 glasses. The seal quality of the glass-preoxidized Kovar seal was superior to that of the glass-nonoxidized Kovar seal. The shear strength of the ASFll0 glass-preoxidized Kovar seal, which was prepared at 980℃ for 20 min in an Ar atmosphere, was approximately 3.9 MPa. 展开更多
关键词 Kovar alloy glass SEALING ARGON nitrogen oxidation WETTING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部