Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,i...Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.展开更多
Weld seam detection is an important part of automated welding.At present,few studies have been conducted on annular weld seams,and a lot of defects exist in the point cloud model of the tube sheet obtained by RGB-D ca...Weld seam detection is an important part of automated welding.At present,few studies have been conducted on annular weld seams,and a lot of defects exist in the point cloud model of the tube sheet obtained by RGB-D cameras and photography methods.Aiming at the above problems,this paper proposed an annular weld seam detection network named WeldNet where a voxel feature encoding layer was adaptively improved for annular weld seams,the sparse convolutional network and region proposal network(RPN)were used to detect annular weld seam position,and an annular weld seam detection loss function was designed.Further,an annular weld seam dataset was established to train the network.Compared with the random sampling consistency(RANSAC)method,WeldNet has a higher detection accuracy,as well as a higher detection success rate which has increased by 23%.Compared with U-Net,WeldNet has been proven to achieve a better detection result,and the intersection over the union of the weld seam detection is improved by 17.8%.展开更多
基金Supported by Ministerial Level Advanced Research Foundation(65822576)Beijing Municipal Education Commission(KM201310858004,KM201310858001)
文摘Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.
基金supported by the Key Research&Development Plan of China(Grant No.2022YFB3404800)the Key Research&Development Plan of Hubei Province(Grant No.2021BAA195)the National Natural Science Foundation of China(Grant No.52188102)。
文摘Weld seam detection is an important part of automated welding.At present,few studies have been conducted on annular weld seams,and a lot of defects exist in the point cloud model of the tube sheet obtained by RGB-D cameras and photography methods.Aiming at the above problems,this paper proposed an annular weld seam detection network named WeldNet where a voxel feature encoding layer was adaptively improved for annular weld seams,the sparse convolutional network and region proposal network(RPN)were used to detect annular weld seam position,and an annular weld seam detection loss function was designed.Further,an annular weld seam dataset was established to train the network.Compared with the random sampling consistency(RANSAC)method,WeldNet has a higher detection accuracy,as well as a higher detection success rate which has increased by 23%.Compared with U-Net,WeldNet has been proven to achieve a better detection result,and the intersection over the union of the weld seam detection is improved by 17.8%.