In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy ...In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.展开更多
In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue t...In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.展开更多
Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditi...Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.展开更多
The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though m...The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.展开更多
The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition f...The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition for predicting the water-resisting ability of the floor.We have used a high-precision microseismic monitoring technique to overcome the limited amount of data available from field measurements. The failure depth of a coal seam floor,especially an inclined coal seam floor,may be more accurately estimated by monitoring the continuous,dynamic failure of the floor.The monitoring results indicate the failure depth of the coal seam floor near the workface conveyance roadway(the lower crossheading) is deeper and that the failure range is wider here compared to the coal seam floor near the return airway(the upper crossheading).The results of micro-seismic monitoring show that the dangerous area for water-inrush from the coal seam floor may be identified.This provides an important field measurement that helps ensure safe and highly efficient mining of the inclined coal seam above the confined aquifer at the Taoyuan Coal Mine.展开更多
To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was...To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was studied with physical simulation and theoretical analysis. The results show that roof strata in the vicinity of the tail gate subside extensively with small cutting height, while roof subsidence near the main gate is relatively assuasive. With increase of the mining space, the caving angle of the roof strata above the main gate increases. The characteristics of the vertical and horizontal displacement of the roof strata demonstrate that caved blocks rotate around the lower hinged point of the roof structure, which may lead to sliding instability. Large dip angle of the coal seam makes sliding instability of the roof structure easier.A three-hinged arch can be easily formed above both the tail and main gates in steeply inclined coal seams. With the growth in the dip angle, subsidence of the arch foot formed above the main gate decreases significantly, which reduces the probability of the roof structure becoming unstable as a result of large deformation, while the potential of the roof structure's sliding instability above the tail gate increases dramatically.展开更多
Understanding the characteristics of drawing body shape is essential for optimization of drawing parameters in longwall top coal caving mining.In this study,both physical experiments and theoretical analysis are emplo...Understanding the characteristics of drawing body shape is essential for optimization of drawing parameters in longwall top coal caving mining.In this study,both physical experiments and theoretical analysis are employed to investigate these characteristics and derive a theoretical equation for the drawing body shape along the working face in an inclined seam.By analyzing the initial positions of drawn marked particles,the characteristics of the drawing body shape for different seam dip angles are obtained.It is shown that the drawing body of the top coal exhibits a shape-difference and volume-symmetry characteristic,on taking a vertical line through the center of support opening as the axis of symmetry,the shapes of the drawing body on the two sides of this axis are clearly different,but their volumes are equal.By establishing theoretical models of the drawing body in the initial drawing stage and the normal drawing stage,a theoretical equation for the drawing body in an inclined seam is proposed,which can accurately describe the characteristics of the drawing body shape.The shape characteristics and volume symmetry of the drawing body are further analyzed by comparing the results of theoretical calculations and numerical simulations.It is shown that one side of the drawing body is divided into two parts by an inflection point,with the lower part being a variation development area.This variation development area increases gradually with increasing seam dip angle,resulting in an asymmetry of the drawing body shape.However,the volume symmetry coefficient fluctuates around 1 for all values of the seam dip angle variation,and the volumes of the drawing body on the two sides are more or less equal as the variation development volume is more or less equal to the cut volume.Both theoretical calculations and numerical simulations confirm that the drawing body of the top coal exhibits the shape-difference and volume-symmetry characteristic.展开更多
This paper presents a new method for the correct selection of mining methods and pre-diction of main technological and economic indexes of the face in the gentle inclined thick seams with the application of the artifi...This paper presents a new method for the correct selection of mining methods and pre-diction of main technological and economic indexes of the face in the gentle inclined thick seams with the application of the artificial neural network theory and the expert system. The theory anal- ysis and calculating results indicate that the method is reliable, practical and precise. This method has strongly capabilities of self-study and non-linear dynamic data process. It is expected to be widely applied in the policy decision and prediction of mining technology in coal mine.展开更多
By turning to the theory of elastic thin plates, a mechanical model of the main roof breaking for severely inclined seam under long wall working was esbalished, in which formulaes were deduced for the calculation of t...By turning to the theory of elastic thin plates, a mechanical model of the main roof breaking for severely inclined seam under long wall working was esbalished, in which formulaes were deduced for the calculation of the stress distribution. When the main roof stress distribution was characterized, the failure form of the roof in the long wall coal seam under work was given with the failure criterion deduced. The deduced failure criterion was then applied to the No.3232(3) face of the Li- zuizi Coal Mine; the first pressure for the working face was accurately predicted. Results of the field application show that the main roof of the severely inclined coal seam under long wall working breaks in the O-X pattern, which is basically in accor- dance with the reality.展开更多
Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete eleme...Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete element calculation, the research shows that, as the mining deepens, underground stress of lower sublevels is more obvious and higher than that of upper sublevels and is higher in the air return roadway than that in the air intake roadway in the area that is near to the top coal. Because the top coal is thick and gangue is caved above the support, underground pressure to the working face is relatively gentle. Immediate roof will mainly fall down along the floor. Main roof and the rock bed above the main roof will move to the mined out area along the fault in the early stage and then fall down with the mined out area later. In addition, roof pressure mainly periodically appears in two directions along the trend and the dip.展开更多
Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entr...Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entry retaining in a thin seam with a large inclined angle. The results show that during exploitation in seams with large inclined angle, rotational subsidence of the main roof under the gob area is small and can maintain balance, so there is no need to provide artificial permanent support resistance for the main roof near the upper side to control rotational subsidence. Obstructed by the dense scrap rail,waste rock from the immediate roof caving slides from the upper gob area to the lower area and fills it,which strikes a balance between the immediate roof under the goaf after it fractures into large pieces and filling waste rocks.展开更多
A typical gateway is analyzed using fully-deformable discrete element method. The fractured zone around the gateway is measured in field. Based on the measurement results and theoretical analysis, a comprehensive supp...A typical gateway is analyzed using fully-deformable discrete element method. The fractured zone around the gateway is measured in field. Based on the measurement results and theoretical analysis, a comprehensive support scheme adopting bolt and steel belt is proposed. Discrete element method is used to assess the bolting scheme, and displacement monitoring in field is also carried out. Having been put into practice, it is proved that the scheme is both successful and rational. According to theoretical analysis and monitoring in field, some important keynotes that should be noticed in gateway bolting practice are presented as well.展开更多
To ameliorate the defects of insufcient support resistance of traditional roadside flling bodies for gob-side entry retaining(GER),overcome the inability to adapt to the deformation of surrounding rock,and isolate the...To ameliorate the defects of insufcient support resistance of traditional roadside flling bodies for gob-side entry retaining(GER),overcome the inability to adapt to the deformation of surrounding rock,and isolate the goaf efectively,a new type of high-water material as a roadside flling body for GER technology with double roadways was proposed.The instability analysis and control technology of GER with double roadways by flling high-water material into a gently inclined coal seam were studied.The basic mechanical properties of the new high-water material were investigated through laboratory experiments,and their main advantages were identifed.The reasonable width of the roadside flling wall of a high-water material was obtained by combining ground pressure observation and theoretical calculations.The distribution characteristics of the stress and plastic zone of surrounding rock of GER after being stabilized by the disturbance of the working face were studied using numerical simulations,and the failure range of GER by flling with high-water material was revealed.Based on this,a coupling control technology of anchor cables and bolts+single props+metal mesh+anchor bolts is proposed.Through the coupling methods of arranging borehole peeping and observing the convergences of surrounding rock,the results demonstrate that GER with double roadways by flling with a 1.8-m-wide high-water material has a good control efect.The above research will play an active role in promoting the application of high-water materials in GER roadside flling.展开更多
This paper analyzes the gas source of the horizontally sectioned fully mechanized caving face in the steeply inclined and extra-thick seam of Adaohai Coal Mine, and numerically simulates the stress distribution and pr...This paper analyzes the gas source of the horizontally sectioned fully mechanized caving face in the steeply inclined and extra-thick seam of Adaohai Coal Mine, and numerically simulates the stress distribution and pressure relief of the lower section coal after the upper section working face is mined. It theoretically analyzed the reasonable layout of the drainage boreholes, and designed the drainage borehole layout accordingly. In the upper and lower section of the working face, the actual drainage effect of the boreholes was inspected, and the air exhaust gas volume in the working face was statistically analyzed. It was confirmed that the layout of boreholes was reasonable, the gas control effect of working face was greatly improved and fully met the needs of safe mining. The control effect was greatly improved and the need for safe mining was fully met, and thus a gas drainage technology suitable for the coal seam storage conditions and mining technology of the Adaohai Coal Mine was found. That is to say: the gas emission from the working face of the section mining mainly comes from its lower coal body. Pre-draining the lower coal body of the section and depressurizing gas interception and drainage are the key to effectively solve the problem of gas emission from the working face. Drainage boreholes in the working face of the section should be arranged at high and low positions. The high-level boreholes are located about 2 m from the top of the working face, and the high-level boreholes are about 9 m away from the top of the working face. Through the pre drainage of high and low-level boreholes in advance and the interception and pressure relief drainage, the gas control in the horizontal sublevel fully mechanized caving mining face in steep and extra thick coal seam can realize a virtuous cycle.展开更多
Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new de...Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward.展开更多
The sublevel top coal caving(SLTCC)mining technology is extensively employed in steeply inclined thick coal seams.Because of the typical characteristics of the short coal face in this mining method,a signifi-cant port...The sublevel top coal caving(SLTCC)mining technology is extensively employed in steeply inclined thick coal seams.Because of the typical characteristics of the short coal face in this mining method,a signifi-cant portion of the top coal is lost at the face end.For reducing the coal loss,the partially reverse drawing technique(PRDT)is proposed as a novel top coal drawing technique.Meanwhile,based on the Bergmark-Roos model(B-R model),a theoretical method for calculating the recovery ratio of top coal based on the top coal boundary equation and residual top coal amount is proposed.The mechanism of PRDT to reduce top coal loss at the face end is revealed by comparing with single-round sequential drawing technique(SSDT).Physical experiments and in-site observation data were used to verify the theoretical model.The results show that PRDT can effectively reduce the amount of residual coal near the roof by optimizing the shape characteristics of top coal boundary.Suggestions for improve recovery ratio in Wudong Coal Mine were given based on its face parameters.展开更多
基金support from the National Key R&D Program of China(Grant No.2022YFC3004704)the National Natural Science Foundation of China(Grant No.52374241)the National Natural Science Foundation of China Youth Foundation(Grant No.52104230).
文摘In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.
基金financially supported by the Major Program of the National Natural Science Foundation of China(No.52394191)the Outstanding Ph.D Dissertation Cultivating Program of Xi’an University of Science and Technology(No.PY22001)the National Foundation for studying abroad(No.[2022]87)。
文摘In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.
文摘Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.
文摘The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.
基金supported by the National Basic Research Program ofChina(No.2010CB202210)the National Natural Science Foundation of China(No.50874103)+1 种基金the Natural Science Foundation of Jiangsu Province(No.KB2008135)as well as by the Qinglan Project of Jiangsu Province
文摘The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition for predicting the water-resisting ability of the floor.We have used a high-precision microseismic monitoring technique to overcome the limited amount of data available from field measurements. The failure depth of a coal seam floor,especially an inclined coal seam floor,may be more accurately estimated by monitoring the continuous,dynamic failure of the floor.The monitoring results indicate the failure depth of the coal seam floor near the workface conveyance roadway(the lower crossheading) is deeper and that the failure range is wider here compared to the coal seam floor near the return airway(the upper crossheading).The results of micro-seismic monitoring show that the dangerous area for water-inrush from the coal seam floor may be identified.This provides an important field measurement that helps ensure safe and highly efficient mining of the inclined coal seam above the confined aquifer at the Taoyuan Coal Mine.
基金the Joint Funds of the National Natural Science Foundation of China (No. U1361209)the National Basic Research Program of China (No. 2013CB227903)
文摘To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was studied with physical simulation and theoretical analysis. The results show that roof strata in the vicinity of the tail gate subside extensively with small cutting height, while roof subsidence near the main gate is relatively assuasive. With increase of the mining space, the caving angle of the roof strata above the main gate increases. The characteristics of the vertical and horizontal displacement of the roof strata demonstrate that caved blocks rotate around the lower hinged point of the roof structure, which may lead to sliding instability. Large dip angle of the coal seam makes sliding instability of the roof structure easier.A three-hinged arch can be easily formed above both the tail and main gates in steeply inclined coal seams. With the growth in the dip angle, subsidence of the arch foot formed above the main gate decreases significantly, which reduces the probability of the roof structure becoming unstable as a result of large deformation, while the potential of the roof structure's sliding instability above the tail gate increases dramatically.
基金The authors gratefully acknowledge financial support from the Natural Science Foundation of China(51674264.51574244)the National Key R&D Plan of China(2018YFC0604501)+1 种基金the China Postdoctoral Science Foundation(2018M631622)Special acknowledgements are also given to the China Scholarship Council(CSC).
文摘Understanding the characteristics of drawing body shape is essential for optimization of drawing parameters in longwall top coal caving mining.In this study,both physical experiments and theoretical analysis are employed to investigate these characteristics and derive a theoretical equation for the drawing body shape along the working face in an inclined seam.By analyzing the initial positions of drawn marked particles,the characteristics of the drawing body shape for different seam dip angles are obtained.It is shown that the drawing body of the top coal exhibits a shape-difference and volume-symmetry characteristic,on taking a vertical line through the center of support opening as the axis of symmetry,the shapes of the drawing body on the two sides of this axis are clearly different,but their volumes are equal.By establishing theoretical models of the drawing body in the initial drawing stage and the normal drawing stage,a theoretical equation for the drawing body in an inclined seam is proposed,which can accurately describe the characteristics of the drawing body shape.The shape characteristics and volume symmetry of the drawing body are further analyzed by comparing the results of theoretical calculations and numerical simulations.It is shown that one side of the drawing body is divided into two parts by an inflection point,with the lower part being a variation development area.This variation development area increases gradually with increasing seam dip angle,resulting in an asymmetry of the drawing body shape.However,the volume symmetry coefficient fluctuates around 1 for all values of the seam dip angle variation,and the volumes of the drawing body on the two sides are more or less equal as the variation development volume is more or less equal to the cut volume.Both theoretical calculations and numerical simulations confirm that the drawing body of the top coal exhibits the shape-difference and volume-symmetry characteristic.
文摘This paper presents a new method for the correct selection of mining methods and pre-diction of main technological and economic indexes of the face in the gentle inclined thick seams with the application of the artificial neural network theory and the expert system. The theory anal- ysis and calculating results indicate that the method is reliable, practical and precise. This method has strongly capabilities of self-study and non-linear dynamic data process. It is expected to be widely applied in the policy decision and prediction of mining technology in coal mine.
基金Supported by the National Natural Science Foundation of China (51074005, 51004004, 51074003)
文摘By turning to the theory of elastic thin plates, a mechanical model of the main roof breaking for severely inclined seam under long wall working was esbalished, in which formulaes were deduced for the calculation of the stress distribution. When the main roof stress distribution was characterized, the failure form of the roof in the long wall coal seam under work was given with the failure criterion deduced. The deduced failure criterion was then applied to the No.3232(3) face of the Li- zuizi Coal Mine; the first pressure for the working face was accurately predicted. Results of the field application show that the main roof of the severely inclined coal seam under long wall working breaks in the O-X pattern, which is basically in accor- dance with the reality.
基金Supported by the Scientific Research Business of China University of Mining & Technology (Beijing) (2009QZ04) the National Natural Science Foundation of China (50974123)
文摘Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete element calculation, the research shows that, as the mining deepens, underground stress of lower sublevels is more obvious and higher than that of upper sublevels and is higher in the air return roadway than that in the air intake roadway in the area that is near to the top coal. Because the top coal is thick and gangue is caved above the support, underground pressure to the working face is relatively gentle. Immediate roof will mainly fall down along the floor. Main roof and the rock bed above the main roof will move to the mined out area along the fault in the early stage and then fall down with the mined out area later. In addition, roof pressure mainly periodically appears in two directions along the trend and the dip.
基金Financial support for this work was provided by the National Natural Science Foundation of China(No.51104176)
文摘Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entry retaining in a thin seam with a large inclined angle. The results show that during exploitation in seams with large inclined angle, rotational subsidence of the main roof under the gob area is small and can maintain balance, so there is no need to provide artificial permanent support resistance for the main roof near the upper side to control rotational subsidence. Obstructed by the dense scrap rail,waste rock from the immediate roof caving slides from the upper gob area to the lower area and fills it,which strikes a balance between the immediate roof under the goaf after it fractures into large pieces and filling waste rocks.
文摘A typical gateway is analyzed using fully-deformable discrete element method. The fractured zone around the gateway is measured in field. Based on the measurement results and theoretical analysis, a comprehensive support scheme adopting bolt and steel belt is proposed. Discrete element method is used to assess the bolting scheme, and displacement monitoring in field is also carried out. Having been put into practice, it is proved that the scheme is both successful and rational. According to theoretical analysis and monitoring in field, some important keynotes that should be noticed in gateway bolting practice are presented as well.
基金supported by the National Natural Science Foundation of China(Nos.52074296,52004286)the China Postdoctoral Science Foundation(Nos.2020T130701,2019M650895)the Fundamental Research Funds for the Central Universities(Nos.2022YJSNY18,2022XJNY02)。
文摘To ameliorate the defects of insufcient support resistance of traditional roadside flling bodies for gob-side entry retaining(GER),overcome the inability to adapt to the deformation of surrounding rock,and isolate the goaf efectively,a new type of high-water material as a roadside flling body for GER technology with double roadways was proposed.The instability analysis and control technology of GER with double roadways by flling high-water material into a gently inclined coal seam were studied.The basic mechanical properties of the new high-water material were investigated through laboratory experiments,and their main advantages were identifed.The reasonable width of the roadside flling wall of a high-water material was obtained by combining ground pressure observation and theoretical calculations.The distribution characteristics of the stress and plastic zone of surrounding rock of GER after being stabilized by the disturbance of the working face were studied using numerical simulations,and the failure range of GER by flling with high-water material was revealed.Based on this,a coupling control technology of anchor cables and bolts+single props+metal mesh+anchor bolts is proposed.Through the coupling methods of arranging borehole peeping and observing the convergences of surrounding rock,the results demonstrate that GER with double roadways by flling with a 1.8-m-wide high-water material has a good control efect.The above research will play an active role in promoting the application of high-water materials in GER roadside flling.
文摘This paper analyzes the gas source of the horizontally sectioned fully mechanized caving face in the steeply inclined and extra-thick seam of Adaohai Coal Mine, and numerically simulates the stress distribution and pressure relief of the lower section coal after the upper section working face is mined. It theoretically analyzed the reasonable layout of the drainage boreholes, and designed the drainage borehole layout accordingly. In the upper and lower section of the working face, the actual drainage effect of the boreholes was inspected, and the air exhaust gas volume in the working face was statistically analyzed. It was confirmed that the layout of boreholes was reasonable, the gas control effect of working face was greatly improved and fully met the needs of safe mining. The control effect was greatly improved and the need for safe mining was fully met, and thus a gas drainage technology suitable for the coal seam storage conditions and mining technology of the Adaohai Coal Mine was found. That is to say: the gas emission from the working face of the section mining mainly comes from its lower coal body. Pre-draining the lower coal body of the section and depressurizing gas interception and drainage are the key to effectively solve the problem of gas emission from the working face. Drainage boreholes in the working face of the section should be arranged at high and low positions. The high-level boreholes are located about 2 m from the top of the working face, and the high-level boreholes are about 9 m away from the top of the working face. Through the pre drainage of high and low-level boreholes in advance and the interception and pressure relief drainage, the gas control in the horizontal sublevel fully mechanized caving mining face in steep and extra thick coal seam can realize a virtuous cycle.
文摘Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward.
基金supported by the Beijing Natural Science Foundation(No.2232059)the National Natural Science Foundation of China(Nos.52121003,52374148,52204163 and 51934008)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.2023JCCXNY04 and 2023YQTD02)the Open Fund of Key laboratory of Xinjiang Coal Resources Green Mining,Ministry of Education(No.KLXGY-KB2408)。
文摘The sublevel top coal caving(SLTCC)mining technology is extensively employed in steeply inclined thick coal seams.Because of the typical characteristics of the short coal face in this mining method,a signifi-cant portion of the top coal is lost at the face end.For reducing the coal loss,the partially reverse drawing technique(PRDT)is proposed as a novel top coal drawing technique.Meanwhile,based on the Bergmark-Roos model(B-R model),a theoretical method for calculating the recovery ratio of top coal based on the top coal boundary equation and residual top coal amount is proposed.The mechanism of PRDT to reduce top coal loss at the face end is revealed by comparing with single-round sequential drawing technique(SSDT).Physical experiments and in-site observation data were used to verify the theoretical model.The results show that PRDT can effectively reduce the amount of residual coal near the roof by optimizing the shape characteristics of top coal boundary.Suggestions for improve recovery ratio in Wudong Coal Mine were given based on its face parameters.