Using the seasonal cross-multiplication trend model, monthly precipitation of eight national basic weather stations of Shaanxi Province from 2005 to 2010 was predicted, and the forecast results were verified using the...Using the seasonal cross-multiplication trend model, monthly precipitation of eight national basic weather stations of Shaanxi Province from 2005 to 2010 was predicted, and the forecast results were verified using the rainfall scoring rules of China Meteorological Administration. The verification results show that the average score of annual precipitation prediction in recent six years is higher than that made by a professional forecaster, so this model has a good prospect of application. Moreover, the level of making prediction is steady, and it can be widely used in long-term prediction of rainfall.展开更多
The passenger transportation, as an important index to describe the scale of aviation passenger transport, prediction and research, can let us understand the future trend of the aviation passenger transport, according...The passenger transportation, as an important index to describe the scale of aviation passenger transport, prediction and research, can let us understand the future trend of the aviation passenger transport, according to it, the airline can make corresponding marketing strategy adjustment. Combining with the knowledge of time series let us understand the characteristics of passenger transportation change, the R software is used to fit the data, so as to establish the ARIMA(1,1,8) model to describe the civil aviation passenger transport developing trend in the future and to make reasonable predictions.展开更多
Background: Daily paediatric asthma readmissions within 28 days are a good example of a low count time series and not easily amenable to common time series methods used in studies of asthma seasonality and time trends...Background: Daily paediatric asthma readmissions within 28 days are a good example of a low count time series and not easily amenable to common time series methods used in studies of asthma seasonality and time trends. We sought to model and predict daily trends of childhood asthma readmissions over time inVictoria,Australia. Methods: We used a database of 75,000 childhood asthma admissions from the Department ofHealth,Victoria,Australiain 1997-2009. Daily admissions over time were modeled using a semi parametric Generalized Additive Model (GAM) and by sex and age group. Predictions were also estimated by using these models. Results: N = 2401 asthma readmissions within 28 days occurred during study period. Of these, n = 1358 (57%) were boys. Overall, seasonal peaks occurred in winter (30.5%) followed by autumn (28.6%) and then spring (24.6%) (p展开更多
基金Supported by the Major State Basic Research Development Program("973"Program)(2012CB956204)Special Project for Climate Change of China Meteorological Administration(CCSF2011-4)
文摘Using the seasonal cross-multiplication trend model, monthly precipitation of eight national basic weather stations of Shaanxi Province from 2005 to 2010 was predicted, and the forecast results were verified using the rainfall scoring rules of China Meteorological Administration. The verification results show that the average score of annual precipitation prediction in recent six years is higher than that made by a professional forecaster, so this model has a good prospect of application. Moreover, the level of making prediction is steady, and it can be widely used in long-term prediction of rainfall.
文摘The passenger transportation, as an important index to describe the scale of aviation passenger transport, prediction and research, can let us understand the future trend of the aviation passenger transport, according to it, the airline can make corresponding marketing strategy adjustment. Combining with the knowledge of time series let us understand the characteristics of passenger transportation change, the R software is used to fit the data, so as to establish the ARIMA(1,1,8) model to describe the civil aviation passenger transport developing trend in the future and to make reasonable predictions.
文摘Background: Daily paediatric asthma readmissions within 28 days are a good example of a low count time series and not easily amenable to common time series methods used in studies of asthma seasonality and time trends. We sought to model and predict daily trends of childhood asthma readmissions over time inVictoria,Australia. Methods: We used a database of 75,000 childhood asthma admissions from the Department ofHealth,Victoria,Australiain 1997-2009. Daily admissions over time were modeled using a semi parametric Generalized Additive Model (GAM) and by sex and age group. Predictions were also estimated by using these models. Results: N = 2401 asthma readmissions within 28 days occurred during study period. Of these, n = 1358 (57%) were boys. Overall, seasonal peaks occurred in winter (30.5%) followed by autumn (28.6%) and then spring (24.6%) (p