Numerical simulations are carried out to investigate the effect of cloud condensation nuclei(CCN) concentrations on microphysical processes and precipitation characteristics of hailstorms. Two hailstorm cases are si...Numerical simulations are carried out to investigate the effect of cloud condensation nuclei(CCN) concentrations on microphysical processes and precipitation characteristics of hailstorms. Two hailstorm cases are simulated, a spring case and a summer case, in a semiarid region of northern China, with the Regional Atmospheric Modeling System. The results are used to investigate the differences and similarities of the CCN effects between spring and summer hailstorms. The similarities are:(1) The total hydrometeor mixing ratio decreases, while the total ice-phase mixing ratio enhances, with increasing CCN concentration;(2) Enhancement of the CCN concentration results in the production of a greater amount of small-sized hydrometeor particles, but a lessening of large-sized hydrometeor particles;(3) As the CCN concentration increases, the supercooled cloud water and rainwater make a lesser contribution to hail, while the ice-phase hydrometeors take on active roles in the growth of hail;(4) When the CCN concentration increases, the amount of total precipitation lessens,while the role played by liquid-phase rainfall in the amount of total precipitation reduces, relatively, compared to that of icephase precipitation. The differences between the two storms include:(1) An increase in the CCN concentration tends to reduce pristine ice mixing ratios in the spring case but enhance them in the summer case;(2) Ice-phase hydrometeor particles contribute more to hail growth in the spring case, while liquid water contributes more in the summer case;(3) An increase in the CCN concentration has different effects on surface hail precipitation in different seasons.展开更多
The air temperature of Wuli,which is located in seasonal frozen ground zone,is rising by 13 ℃ yearly.This paper discusses the days that each ground layers' temperature lags behind the surface temperature in reach...The air temperature of Wuli,which is located in seasonal frozen ground zone,is rising by 13 ℃ yearly.This paper discusses the days that each ground layers' temperature lags behind the surface temperature in reaching extremum.The results were shown:The time of each ground layers' lagging days was increasing;the lagging day in warm season was longer than that in cold season;the growth rate of lagging days in warm season was 0.5 d/y,while the growth rate of lagging days in cold season was 0.7 d/y.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41205099 and 41575037)the National Science Foundation of China (Grant No. 41405128)+2 种基金the National Grand Fundamental Research 973 Programs of China (Grant Nos. 2014CB441403 and 2013CB430105)the Special Scientific Research Project of the Meteorological Public Welfare Profession of China (Grant No. GYHY201006031)the Guizhou Province Scientific Research Joint Project (Grant No. G[2013]4001)
文摘Numerical simulations are carried out to investigate the effect of cloud condensation nuclei(CCN) concentrations on microphysical processes and precipitation characteristics of hailstorms. Two hailstorm cases are simulated, a spring case and a summer case, in a semiarid region of northern China, with the Regional Atmospheric Modeling System. The results are used to investigate the differences and similarities of the CCN effects between spring and summer hailstorms. The similarities are:(1) The total hydrometeor mixing ratio decreases, while the total ice-phase mixing ratio enhances, with increasing CCN concentration;(2) Enhancement of the CCN concentration results in the production of a greater amount of small-sized hydrometeor particles, but a lessening of large-sized hydrometeor particles;(3) As the CCN concentration increases, the supercooled cloud water and rainwater make a lesser contribution to hail, while the ice-phase hydrometeors take on active roles in the growth of hail;(4) When the CCN concentration increases, the amount of total precipitation lessens,while the role played by liquid-phase rainfall in the amount of total precipitation reduces, relatively, compared to that of icephase precipitation. The differences between the two storms include:(1) An increase in the CCN concentration tends to reduce pristine ice mixing ratios in the spring case but enhance them in the summer case;(2) Ice-phase hydrometeor particles contribute more to hail growth in the spring case, while liquid water contributes more in the summer case;(3) An increase in the CCN concentration has different effects on surface hail precipitation in different seasons.
基金Supported by Pasture Industrialization Technology Research Integration and Application in Mountainous Areas of Guizhou([2014]6017)Phosphate Solubilizing Bacteria Bank Establishment and Phosphate Solubilization Mechanism of Pasture Rhizosphere in Mountainous Areas of Guizhou([2013]2152)
文摘The air temperature of Wuli,which is located in seasonal frozen ground zone,is rising by 13 ℃ yearly.This paper discusses the days that each ground layers' temperature lags behind the surface temperature in reaching extremum.The results were shown:The time of each ground layers' lagging days was increasing;the lagging day in warm season was longer than that in cold season;the growth rate of lagging days in warm season was 0.5 d/y,while the growth rate of lagging days in cold season was 0.7 d/y.