期刊文献+
共找到144篇文章
< 1 2 8 >
每页显示 20 50 100
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:16
1
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving average(ARIMA)
下载PDF
Forecasting risk using auto regressive integrated moving average approach: an evidence from S&P BSE Sensex 被引量:2
2
作者 Madhavi Latha Challa Venkataramanaiah Malepati Siva Nageswara Rao Kolusu 《Financial Innovation》 2018年第1期344-360,共17页
The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip... The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip companies.To reach out the predefined objectives of the research,Auto Regressive Integrated Moving Average method is used to forecast the future risk and returns for 10 years of historical data from April 2007 to March 2017.Validation accomplished by comparison of forecasted and actual beta values for the hold back period of 2 years.Root-Mean-Square-Error and Mean-Absolute-Error both are used for accuracy measurement.The results revealed that out of 30 listed companies in the BSE Sensex,10 companies’exhibits high beta values,12 companies are with moderate and 8 companies are with low beta values.Further,it is to note that Housing Development Finance Corporation(HDFC)exhibits more inconsistency in terms of beta values though the average beta value is lowest among the companies under the study.A mixed trend is found in forecasted beta values of the BSE Sensex.In this analysis,all the p-values are less than the F-stat values except the case of Tata Steel and Wipro.Therefore,the null hypotheses were rejected leaving Tata Steel and Wipro.The values of actual and forecasted values are showing the almost same results with low error percentage.Therefore,it is concluded from the study that the estimation ARIMA could be acceptable,and forecasted beta values are accurate.So far,there are many studies on ARIMA model to forecast the returns of the stocks based on their historical data.But,hardly there are very few studies which attempt to forecast the returns on the basis of their beta values.Certainly,the attempt so made is a novel approach which has linked risk directly with return.On the basis of the present study,authors try to through light on investment decisions by linking it with beta values of respective stocks.Further,the outcomes of the present study undoubtedly useful to academicians,researchers,and policy makers in their respective area of studies. 展开更多
关键词 Akaike Information Criteria(AIC) Bombay Stock Exchange(BSE) auto regressive integrated moving average(ARIMA) Beta Time series
下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估
3
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节性回归移动平均和支持向量回归(sarima和SVR) 组合模型 协方差优选法
下载PDF
基于SARIMAX-SVR的光伏发电功率预测 被引量:1
4
作者 周鑫 李燕 +1 位作者 曾永辉 石鹏程 《电力系统及其自动化学报》 CSCD 北大核心 2024年第5期1-8,共8页
为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发... 为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发电功率预测方法。首先,采用相关性特征法聚类气象条件中关键气象因子,以消除数据冗余并降低ARIMAX模型的复杂性;其次,在ARIMAX模型中引入季节性因素,构建SARIMAX模型来捕捉数据的季节性变化;最后,使用SARIMAX模型的拟合残差其作为SVR模型的输入,进一步拟合数据的非线性。通过仿真算例分析表明,所提方法可显著提高光伏发电功率预测精度。 展开更多
关键词 光伏发电 功率预测 差分自回归移动平均 季节性因子 支持向量回归
下载PDF
基于SARIMA模型的近岸海表温度短期预报研究 被引量:1
5
作者 赵强 王擎宇 舒志光 《海洋预报》 CSCD 北大核心 2024年第1期42-49,共8页
基于石浦海洋站实测数据,采用周期性自回归积分滑动平均方法(SARIMA)构建了逐时海表温度短期预报模型,根据观测数据的周期特征和模型预报误差比选确定了模型参数。结果表明:与采用逐时观测数据作为输入的模型相比,采用逐0.5 h内插数据... 基于石浦海洋站实测数据,采用周期性自回归积分滑动平均方法(SARIMA)构建了逐时海表温度短期预报模型,根据观测数据的周期特征和模型预报误差比选确定了模型参数。结果表明:与采用逐时观测数据作为输入的模型相比,采用逐0.5 h内插数据构建的SARIMA模型的预报结果与实测数据间的相位更为一致,预报误差更小,但进一步将输入数据的时间分辨率提高,72 h逐时预报精度提升不明显;研究还发现模型预报误差总体随输入数据时长的减小而增大;采用366 d逐0.5 h数据构建的SARIMA(2,0,2)(2,1,0)25模型的预报结果较优,0~24 h、24~48 h、48~72 h预报的平均绝对误差分别为0.176℃、0.350℃、0.520℃,相应的均方根误差分别为0.217℃、0.396℃、0.567℃。 展开更多
关键词 周期性自回归积分滑动平均方法 统计预报 海表温度 预报
下载PDF
基于DWT-SARIMA-LSTM的流感预测模型研究
6
作者 胡兆辉 陈兆学 《软件工程》 2024年第5期56-61,共6页
为提高流感预测模型的准确率,针对流感数据的季节性与波动性特点,提出利用离散小波分解(DWT)、季节性自回归综合移动平均模型(SARIMA)和长短期记忆神经网络(LSTM)综合建模,构建DWT-SARIMA-LSTM混合预测模型。首先,将流感数据分解为高频... 为提高流感预测模型的准确率,针对流感数据的季节性与波动性特点,提出利用离散小波分解(DWT)、季节性自回归综合移动平均模型(SARIMA)和长短期记忆神经网络(LSTM)综合建模,构建DWT-SARIMA-LSTM混合预测模型。首先,将流感数据分解为高频成分与低频成分,对低频成分使用SARIMA模型、高频成分使用LSTM模型分别进行预测;其次,将预测值融合得到最终的预测结果;最后,构建流行控制图预警模型。使用从中国香港卫生署官网获得的中国香港地区2010—2019年的流感数据对模型进行预测和验证,其MAE为0.3427,MAPE为8.0973%,RMSE为0.4632,预警模型的准确率为100%,该模型较于如ARIMA-LSTM等其他混合模型有更高的预测精度。 展开更多
关键词 流感预测 小波分解 季节性自回归综合移动平均模型 长短期记忆神经网络
下载PDF
基于SARIMA模型的上海市中心城区共享单车需求预测
7
作者 范棪堃 《信息与电脑》 2024年第5期210-214,共5页
无桩式共享单车的出现与推广在减少碳排放的同时,带来了道路拥堵问题。如何高效、准确地进行交通流量预测已经成为人们关注的热点。利用2016年8月上海市中心城区摩拜共享单车数据,利用季节性差分自回归移动平均模型(Seasonal Autoregres... 无桩式共享单车的出现与推广在减少碳排放的同时,带来了道路拥堵问题。如何高效、准确地进行交通流量预测已经成为人们关注的热点。利用2016年8月上海市中心城区摩拜共享单车数据,利用季节性差分自回归移动平均模型(Seasonal Autoregressive Integrated Moving Average Model,SARIMA模型)进行模拟和预测,再通过折线图的方式揭示共享单车需求量与时间之间的变化关系。研究发现,SARIMA(0,1,3)×(0,1,0)_(84)模型能够有效预测上海市中心城区共享单车的需求量。预测交通流量,可以缓解城市主干道的拥堵状况,提高市民的生活质量。同时,预测通勤需求可以平衡供需关系,为运营企业和用户提供更高效的服务,为政府规划提供决策依据。 展开更多
关键词 季节性差分自回归移动平均模型(sarima模型) 交通流量预测 共享单车
下载PDF
基于SARIMA模型的高校人工智能就业趋势研究
8
作者 王玉萍 冯青文 《信息与电脑》 2023年第3期99-101,共3页
文章利用大数据相关技术,采用Nagao算法、单尺度Retinex(Single Scale Retinex,SSR)算法、季节性差分自回归滑动平均(Seasonal Autoregressive Integrated Moving Average,SARIMA)模型,对人工智能专业的就业趋势和供需关系进行分析和预... 文章利用大数据相关技术,采用Nagao算法、单尺度Retinex(Single Scale Retinex,SSR)算法、季节性差分自回归滑动平均(Seasonal Autoregressive Integrated Moving Average,SARIMA)模型,对人工智能专业的就业趋势和供需关系进行分析和预测。研究表明,人工智能专业的就业形势较为乐观,未来几年将持续保持高速增长。同时,及时掌握人工智能专业的就业趋势和供需关系,提高毕业生的实践能力,加强对人工智能专业毕业生就业市场的研究,并深入挖掘人工智能技术的应用价值,以期为社会提供更多的高质量人工智能人才。 展开更多
关键词 Nagao算法 季节性差分自回归滑动平均(sarima)模型 单尺度Retinex(SSR)算法 人工智能 就业趋势
下载PDF
综合岭回归和SARIMA方法在桥梁健康监测数据分析中的应用 被引量:3
9
作者 谌桢文 常军 《科学技术与工程》 北大核心 2023年第20期8846-8853,共8页
桥梁健康监测系统的实测数据普遍存在缺失问题,为了保证桥梁监测数据的完整性,更好地预测桥梁未来的健康状况,提出了一种具有样本内和样本外预测能力的组合模型。样本外预测可以基于现在数据预测未来的桥梁健康状态,样本内回归用于填补... 桥梁健康监测系统的实测数据普遍存在缺失问题,为了保证桥梁监测数据的完整性,更好地预测桥梁未来的健康状况,提出了一种具有样本内和样本外预测能力的组合模型。样本外预测可以基于现在数据预测未来的桥梁健康状态,样本内回归用于填补传感器数据中的缺失值,确保桥梁监测数据的完整性。由于不同位置处相同类型传感器的相关性较强,首先利用岭回归(ridge regression,RR)解决共线性问题,建立各传感器数据之间的关联,并预测缺失数据。接着引入季节性差分自回归滑动平均(seasonal autoregressive integrated moving average,SARIMA)方法,利用其样本外预测能力并结合岭回归方法预测桥梁未来运行数据。最后,将该方法应用于实桥中,验证了其有效性,为传感器数据填补以及预测桥梁未来状态提供了有效的预测模型。 展开更多
关键词 大数据 缺失数据填补 数据预测 岭回归(RR) 季节性差分自回归滑动平均(sarima)
下载PDF
基于车流量数据的SARIMA和LSTM组合模型的比较研究
10
作者 李贺宇 南润 胡茜 《长春工业大学学报》 CAS 2023年第1期72-77,共6页
针对同时具有周期性、长记忆性等多种特征的车流量数据,单一地SARIMA或LSTM模型往往拟合效果不理想,而其组合模型可以弥补单一模型的不足。结合线性和非线性预测方法,文中分别建立了三个SARIMA-LSTM组合模型,随后,对车流量数据进行了预... 针对同时具有周期性、长记忆性等多种特征的车流量数据,单一地SARIMA或LSTM模型往往拟合效果不理想,而其组合模型可以弥补单一模型的不足。结合线性和非线性预测方法,文中分别建立了三个SARIMA-LSTM组合模型,随后,对车流量数据进行了预测分析,通过与SARIMA、LSTM两种单模型拟合效果的比较分析表明:1)对含周期性和长记忆性的数据,组合模型的预测效果更优;2)基于MA滤波方法的组合模型三比其他两种方法在提升模型预测精度上表现更好。 展开更多
关键词 季节性差分自回归滑动平均模型(sarima) 长短期记忆网络(LSTM) MA滤波 车流量预测
下载PDF
基于水电储能调节的风光水发电联合优化调度策略
11
作者 何奇 张宇 +4 位作者 邓玲 王海亮 谢琼瑶 王春 胡家旗 《广东电力》 北大核心 2024年第3期12-24,共13页
为缓解新能源装机容量扩大引起的弃风弃光现象,在已有梯级水电上下电站之间加入储能泵站,提出风光水储短期优化调度策略。构建以风光水储系统负荷跟踪误差最小、梯级水电站发电量最大和梯级水电站发电耗水量最小的多目标优化调度模型;... 为缓解新能源装机容量扩大引起的弃风弃光现象,在已有梯级水电上下电站之间加入储能泵站,提出风光水储短期优化调度策略。构建以风光水储系统负荷跟踪误差最小、梯级水电站发电量最大和梯级水电站发电耗水量最小的多目标优化调度模型;提出基于季节性自回归移动平均(seasonal auto-regressive lntegrated moving average, SARIMA)模型和Copula函数的风光出力预测模型作为优化调度模型的边界条件,通过SARIMA预测模型将风光出力历史数据分解为季节性分量、趋势分量以及随机噪声余项进行全天96个调度时段风光出力预测,并叠加上基于Copula函数生成风光出力预测误差,然后通过拉丁超立方采样以及K-means聚类进行场景生成和缩减得到5个风光出力场景。选取风光典型日出力数据为例进行算例分析,算例结果表明:所提预测模型较SARIMA模型可以显著提高预测准确度,模型预测风光出力均方根误差从33.34、229.49 MW分别下降至0.697、9.534 MW;所提优化调度策略可以在全年丰、平、枯水期有效减少弃风弃光现象,并可将过剩新能源中的50%转化为上级水库储存水能。 展开更多
关键词 风光出力预测 季节性自回归移动平均模型 COPULA函数 风光水储系统 负荷跟踪
下载PDF
基于ARIMA-IPOA-CNN-LSTM的太湖水体溶解氧浓度预测模型
12
作者 杨焕峥 崔业梅 +1 位作者 徐玲 薛洪惠 《水电能源科学》 北大核心 2024年第10期55-59,共5页
为了提高太湖水体中溶解氧浓度(DOC)参数的预测准确性,设计了一种基于ARIMA-IPOA-CNN-LSTM的预测模型。首先,采用差分自回归移动平均模型(ARIMA)捕捉数据的时间序列趋势和季节性特征;其次,引入卷积神经网络(CNN)和长短期记忆网络(LSTM)... 为了提高太湖水体中溶解氧浓度(DOC)参数的预测准确性,设计了一种基于ARIMA-IPOA-CNN-LSTM的预测模型。首先,采用差分自回归移动平均模型(ARIMA)捕捉数据的时间序列趋势和季节性特征;其次,引入卷积神经网络(CNN)和长短期记忆网络(LSTM)模型,分别从数据中学习空间和时间特征;再次,提出了一种改进的鹈鹕优化算法(IPOA)来优化模型参数,算法增加了Logistic混沌映射种群初始化、反向差分进化、萤火虫扰动的方法,CEC2005函数的测试结果显著优于传统鹈鹕优化算法;最后,将“剪枝”模型部署于STM32嵌入式设备。试验结果表明,在溶解氧浓度预测方面,该模型具有高的准确性和鲁棒性,为水环境保护提供了一种高效、可靠的解决方案。 展开更多
关键词 差分自回归移动平均 鹈鹕优化算法 卷积神经网络 水体 溶解氧浓度
下载PDF
基于ARIMA模型的南昌市结核病流行趋势预测分析
13
作者 周坤 朱晓琳 +2 位作者 熊文艳 付军 杨树 《中国初级卫生保健》 2024年第8期59-61,共3页
目的:分析南昌市肺结核的流行趋势特征,探讨应用自回归移动平均模型对南昌市肺结核疫情流行趋势特征进行分析和预测,为相关部门制定肺结核综合防控策略提供参考依据。方法:通过中国疾病预防控制中心传染病监测系统获取2012年1月1日—202... 目的:分析南昌市肺结核的流行趋势特征,探讨应用自回归移动平均模型对南昌市肺结核疫情流行趋势特征进行分析和预测,为相关部门制定肺结核综合防控策略提供参考依据。方法:通过中国疾病预防控制中心传染病监测系统获取2012年1月1日—2022年12月31日,现住址为南昌市的肺结核报告发病数据,应用SPSS 25.0软件构建基于南昌市肺结核发病数的自回归移动平均模型,对南昌市肺结核疫情的流行趋势进行分析和预测。结果:2012—2022年南昌市共报告新发肺结核病例44049例,总体呈逐年下降趋势。确定最优预测模型为ARIMA(0,1,4)(0,1,2)12,对2023年1—8月肺结核发病数进行预测并与实际值比较分析的结果显示,预测较好。结论:自回归移动平均模型对肺结核疫情预测效果良好,可以作为肺结核疫情短期预测的工具。 展开更多
关键词 自回归移动平均模型 肺结核 预测
下载PDF
一种基于SARIMA-LSTM模型的电网主机负载预测方法 被引量:4
14
作者 王堃 郑晨 +1 位作者 张立中 陈志刚 《计算机工程与科学》 CSCD 北大核心 2022年第11期2064-2070,共7页
随着智能电网的不断发展,如何提高对信息设备运行状态的预测准确率以及设置适应数据变化的动态阈值区间是电网IT运维面临的巨大挑战。为了解决这些问题,提出了组合时间序列预测模型(SARIMA-LSTM),即在传统周期性ARIMA模型(SARIMA)的基础... 随着智能电网的不断发展,如何提高对信息设备运行状态的预测准确率以及设置适应数据变化的动态阈值区间是电网IT运维面临的巨大挑战。为了解决这些问题,提出了组合时间序列预测模型(SARIMA-LSTM),即在传统周期性ARIMA模型(SARIMA)的基础上,引入深度学习领域的LSTM模型,并摒弃了过去精度低、效果差的误差拟合方法,使用误差自回归方法来补偿预测结果。该模型可以学习到传统ARIMA模型无法捕捉到的误差波动规律,解决其无法预测非线性数据的问题。实验结果表明,在实际预测电网内存负载数据时,与ARIMA模型和SAIRIMA模型相比,SARIMA-LSTM模型可以实现更高的预测精度。 展开更多
关键词 时间序列 负载预测 周期差分移动平均自回归模型 误差补偿 长短期记忆网络
下载PDF
复杂天气条件下光伏电站太阳辐射量短期预测
15
作者 宋晓通 卢艺玮 +1 位作者 师芊芊 梅杨 《科学技术与工程》 北大核心 2024年第30期12985-12995,共11页
复杂天气条件下,天气变化波动较大;光伏电站传统太阳辐射量预测模型无法很好地处理复杂的非线性关系,存在精度不足的缺陷,给电力系统的保护和并网安全带来了挑战。为了应对这一挑战,建立了一种基于自适应模糊神经网络(adaptive-network-... 复杂天气条件下,天气变化波动较大;光伏电站传统太阳辐射量预测模型无法很好地处理复杂的非线性关系,存在精度不足的缺陷,给电力系统的保护和并网安全带来了挑战。为了应对这一挑战,建立了一种基于自适应模糊神经网络(adaptive-network-based fuzzy inference systems,ANFIS)的太阳辐射量预测模型。该模型引入了卫星遥感数据作为输入量,以补充传统的气象数据。首先,使用样本熵计算法对复杂天气进行判定;其次,采用自回归移动平均(auto regression integrated moving average,ARIMA)模型,预测未来24 h的云团光学厚度和气溶胶光学厚度这两种关键的卫星遥感数据。结合大气层上界的太阳辐射量和大气平均温度,建立了基于ANFIS的太阳能辐射量预测模型,从而得到未来24 h的太阳能辐射量预测结果。在算例研究中,将ANFIS模型与多层前馈(back propagation,BP)神经网络预测模型、长短期记忆(long short-term memory,LSTM)神经网络预测模型在不同天气类型中的精度进行了对比。结果表明,在简单天气条件下,ANFIS模型、BP模型、LSTM模型的均方根误差分别为0.1122、0.3184、0.2534 W/m 2,三者相对较小且相差不大;在复杂天气条件中,ANFIS模型的均方根误差为0.8606 W/m 2,比BP模型和LSTM模型分别降低了4.0396、2.0252 W/m 2,这说明ANFIS模型在复杂天气条件下表现较好,能够适应具有较强波动性的数据。研究同时表明,在考虑气象数据的基础上计及卫星遥感数据,可将预测的均方根误差降低0.132 W/m 2,进一步改进了预测精度。 展开更多
关键词 复杂天气 太阳辐射量预测 气象卫星数据 自适应模糊神经网络 自回归移动平均模型
下载PDF
基于时间序列的新能源汽车销售量预测——以比亚迪为例
16
作者 邹瑞 刘吉华 许思为 《科技和产业》 2024年第15期87-93,共7页
新能源汽车的发展对于推进“双碳”目标实现起着关键作用,准确预测销量对于政策制定和企业发展有着重要意义。以比亚迪新能源汽车作为研究对象,运用其历史销量数据分别构建季节性自回归差分移动平均(SARIMA)和长短期记忆(LSTM)网络预测... 新能源汽车的发展对于推进“双碳”目标实现起着关键作用,准确预测销量对于政策制定和企业发展有着重要意义。以比亚迪新能源汽车作为研究对象,运用其历史销量数据分别构建季节性自回归差分移动平均(SARIMA)和长短期记忆(LSTM)网络预测销量。为提升模型预测效果,集成单一模型得到ARIMA-LSTM(自回归差分移动平均-长短期记忆)组合模型,将销量数据分解为线性和非线性两部分,使用ARIMA模型预测销量数据中的趋势,模型的残差及其余非线性部分的数据使用LSTM模型预测,最终将模型的预测结果合并。将组合模型应用于国内新能源汽车销量预测,预测精度为90.96%,效果较单一模型有显著提升。 展开更多
关键词 汽车销量预测 季节性自回归差分移动平均(sarima) 神经网络 新能源汽车
下载PDF
基于SSA-Hurst-ARIMA组合模型的船舶柴油发电机组故障特征短期预测
17
作者 梁清政 王浩 +2 位作者 程垠钟 杨天诣 姚钦博 《现代制造技术与装备》 2024年第2期51-54,共4页
为提高船舶柴油发电机组故障特征短期预测精度,建立基于奇异谱分析(Singular Spectrum Analysis,SSA)、Hurst指数、自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)的组合预测模型。以某试验中船舶柴油发电机组运行... 为提高船舶柴油发电机组故障特征短期预测精度,建立基于奇异谱分析(Singular Spectrum Analysis,SSA)、Hurst指数、自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)的组合预测模型。以某试验中船舶柴油发电机组运行数据为基础,选取增压器滑油压强数据,对比分析单一ARIMA模型、SSA主成分-ARIMA组合模型和SSA-Hurst-ARIMA组合模型的预测效果。结果表明,SSA-Hurst-ARIMA组合模型的预测效果优于单一ARIMA模型和SSA主成分-ARIMA组合模型,更适合应用于船舶柴油发电机组故障特征的短期预测。 展开更多
关键词 船舶柴油发电机组 故障特征 短期预测 奇异谱分析(SSA) HURST指数 自回归移动平均(ARIMA)模型
下载PDF
基于SARIMA-LSTM的门诊量预测研究 被引量:7
18
作者 卢鹏飞 须成杰 +2 位作者 张敬谊 韩侣 李静 《大数据》 2019年第6期101-110,共10页
为了实现更加稳健和精准的门诊量预测,构建了一种基于SARIMA-LSTM的门诊量预测模型。该方法首先使用SARIMA模型对门诊量进行单指标建模,提取门诊量指标蕴含的周期、趋势等信息,然后构建了以节日天数、法定上班天数、平均最高气温等多个... 为了实现更加稳健和精准的门诊量预测,构建了一种基于SARIMA-LSTM的门诊量预测模型。该方法首先使用SARIMA模型对门诊量进行单指标建模,提取门诊量指标蕴含的周期、趋势等信息,然后构建了以节日天数、法定上班天数、平均最高气温等多个相关指标为输入的多对一LSTM模型,对SARIMA模型残差进行进一步学习,实现残差与多个变量间的非线性关系抽取。实证结果表明,构建SARIMA-LSTM混合模型相较5种主流预测方法具有更高的一步预测精度,具有较好的实际应用价值。 展开更多
关键词 季节性差分自回归滑动平均模型 长短期记忆网络 门诊预测 残差
下载PDF
基于SARIMA-GS-SVR组合模型的短期电力需求预测 被引量:2
19
作者 刘晗 王万雄 《电子科技》 2022年第8期58-65,共8页
短期电力需求预测在合理分配电力利用、减少能源浪费和增强电力系统的并网运行方面具有重要作用。应用单一的季节自回归移动平均模型对电力需求预测将限制预测精度。为了提高SARIMA的预测精度,文中提出了SARIMA-GS-SVR组合预测模型。采... 短期电力需求预测在合理分配电力利用、减少能源浪费和增强电力系统的并网运行方面具有重要作用。应用单一的季节自回归移动平均模型对电力需求预测将限制预测精度。为了提高SARIMA的预测精度,文中提出了SARIMA-GS-SVR组合预测模型。采用网格搜索算法将SARIMA预测的残差带入支持向量回归模型进行参数训练,并将寻优的最佳参数带入SVR对残差进行预测。将得到的残差预测结果和SARIMA预测结果加和进行综合分析。建立SARIMA、SVR、GS-SVR和SARIMA-GS-SVR预测模型,以加利福尼亚州电力需求历史数据为例,对该地某日24 h的电力需求进行预测。为了体现模型整体的优越性,选用指数平滑法作为无关基准模型进行实验对比。实验结果表明,相比SARIMA,SARIMA-GS-SVR的预测精度提高了29.1812%,且其MAE、MAPE和RMSE3种误差指标评价值低于其它4种模型。 展开更多
关键词 电力需求预测 残差预测 预测精度 季节差分自回归移动平均 网格搜索算法 支持向量回归 指数平滑法 参数寻优
下载PDF
基于SARIMA-GRNN-SVM的短期商业电力负荷组合预测方法 被引量:17
20
作者 徐晶 迟福建 +3 位作者 葛磊蛟 李娟 张梁 羡一鸣 《电力系统及其自动化学报》 CSCD 北大核心 2020年第2期85-91,共7页
针对短期商业电力负荷预测准确性与周期难以满足现有电力现货市场的问题,提出了一种基于SARIMAGRNN-SVM(seasonal autoregressive integrated moving average-generalized regression neural network-support vector machine)的商业电... 针对短期商业电力负荷预测准确性与周期难以满足现有电力现货市场的问题,提出了一种基于SARIMAGRNN-SVM(seasonal autoregressive integrated moving average-generalized regression neural network-support vector machine)的商业电力负荷组合预测模型。首先,对商业电力负荷变化的周期规律与随机因素的复杂影响进行了分析;然后,结合以上分析,选用SARIMA和GRNN为单一预测模型对商业电力负荷进行预测,并利用SVM进行组合,实现日前商业电力负荷预测;最后,通过某商业综合体的电力负荷数据进行验证。所提组合预测模型较单一预测模型拥有更优的预测精度与鲁棒性,可以为短期商业电力负荷预测提供借鉴。 展开更多
关键词 商业电力负荷 短期预测 季节自回归差分移动平均模型 广义回归神经网络 支持向量机
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部