A two-dimensional unsteady heat transfer model of pavement of geothermal road snow-melting system (GRSS) with solar energy storage is established and numerical simulation is carried out based on annual hourly meteorol...A two-dimensional unsteady heat transfer model of pavement of geothermal road snow-melting system (GRSS) with solar energy storage is established and numerical simulation is carried out based on annual hourly meteorological data and boundary conditions. Simulated results show that ground surface temperature and heating flux decrease with the increase of buried depth, but increase with the increase of fluid temperature in winter. Heat-extracted amount and efficiency drop with the increase of fluid temperature in summer.Compared with ambient temperature, solar radiation has more direct influence on the heat-extracted flux of pipe walls of GRSS in summer. The relationships among maximum and idling snow-melting load, the rate of snowfall, ambient temperature and wind speed are made clear, which provides necessary references for the design and optimization of a practical road snow-melting system.展开更多
Comparison of regular(diurnal,seasonal and solar cycle)variations of high-latitude,mid-latitude and low-latitude ionospheric characteristics has been provided on basis of local empirical models of the peak electron de...Comparison of regular(diurnal,seasonal and solar cycle)variations of high-latitude,mid-latitude and low-latitude ionospheric characteristics has been provided on basis of local empirical models of the peak electron density and the peak height.The local empirical models were derived from the hand-scaled ionogram data recorded by DPS-4 digisondes located at Norilsk(69°N,88°E),Irkutsk(52°N,104°E)and Hainan(19°N,109°E)for a 6-year period from December,2002 to December,2008.The technique used to build the local empirical model is described.The primary focus is diurnal-seasonal behavior under low solar activity and its change with increasing solar activity.Both common and specific features of the high-latitude(Norilsk),mid-latitude(Irkutsk)and low-latitude(Hainan)regular variations were revealed using their local empirical models.展开更多
基金Supported by Tianjin Science and Technology Development Foundation(No.013112811-1).
文摘A two-dimensional unsteady heat transfer model of pavement of geothermal road snow-melting system (GRSS) with solar energy storage is established and numerical simulation is carried out based on annual hourly meteorological data and boundary conditions. Simulated results show that ground surface temperature and heating flux decrease with the increase of buried depth, but increase with the increase of fluid temperature in winter. Heat-extracted amount and efficiency drop with the increase of fluid temperature in summer.Compared with ambient temperature, solar radiation has more direct influence on the heat-extracted flux of pipe walls of GRSS in summer. The relationships among maximum and idling snow-melting load, the rate of snowfall, ambient temperature and wind speed are made clear, which provides necessary references for the design and optimization of a practical road snow-melting system.
基金Supported by Russian Foundation for Basic Research(13-05-91159-GFEN_a)Project 14.518.11.7065 and agreement N8388 of the Ministry of Education and Science of the Russian Federation+1 种基金the National Natural Science Foundation(41274146)the Specialized Research Fund for State Key Laboratory in China
文摘Comparison of regular(diurnal,seasonal and solar cycle)variations of high-latitude,mid-latitude and low-latitude ionospheric characteristics has been provided on basis of local empirical models of the peak electron density and the peak height.The local empirical models were derived from the hand-scaled ionogram data recorded by DPS-4 digisondes located at Norilsk(69°N,88°E),Irkutsk(52°N,104°E)and Hainan(19°N,109°E)for a 6-year period from December,2002 to December,2008.The technique used to build the local empirical model is described.The primary focus is diurnal-seasonal behavior under low solar activity and its change with increasing solar activity.Both common and specific features of the high-latitude(Norilsk),mid-latitude(Irkutsk)and low-latitude(Hainan)regular variations were revealed using their local empirical models.