Zhengzhou is a developing city in China, that is heavily polluted by high levels of particulate matter. In this study, fine particulate matter (PM2.5) was collected and analyzed for their chemical composition (solu...Zhengzhou is a developing city in China, that is heavily polluted by high levels of particulate matter. In this study, fine particulate matter (PM2.5) was collected and analyzed for their chemical composition (soluble ions, elements, elemental carbon (EC) and organic carbon (OC)) in an industrial district of Zhengzhou in 2010. The average concentrations of PM2.5 were 181, 122, 186 and 211 μg/m3 for spring, summer, autumn and winter, respectively, with an annual average of 175 μg/m3, far exceeding the PM2.5 regulation of USA National Air Quality Standards (15 μg/m3). The dominant components of PM2.5 in Zhengzhou were secondary ions (sulphate and nitrate) and carbon fractions. Soluble ions, total carbon and elements contributed 41%, 13% and 3% of PM2.5 mass, respectively. Soil dust, secondary aerosol and coal combustion, each contributing about 26%, 24% and 23% of total PM2.5 mass, were the major sources of PM2.5, according to the result of positive matrix factorization analysis. A mixed source of biomass burning, oil combustion and incineration contributed 13% of PM2.5. Fine particulate matter arising from vehicles and industry contributed about 10% and 4% of PM2.5, respectively.展开更多
Size-resolved aerosol samples were collected by MOUDI in four seasons in 2007 in Beijing. The PM10 and PM1.8mass concentrations were 166.0 ± 120.5 and 91.6 ± 69.7 μg/m^3, respectively,throughout the measure...Size-resolved aerosol samples were collected by MOUDI in four seasons in 2007 in Beijing. The PM10 and PM1.8mass concentrations were 166.0 ± 120.5 and 91.6 ± 69.7 μg/m^3, respectively,throughout the measurement, with seasonal variation: nearly two times higher in autumn than in summer and spring. Serious fine particle pollution occurred in winter with the PM1.8/PM10 ratio of 0.63, which was higher than other seasons. The size distribution of PM showed obvious seasonal and diurnal variation, with a smaller fine mode peak in spring and in the daytime. OM(organic matter = 1.6 × OC(organic carbon)) and SIA(secondary inorganic aerosol) were major components of fine particles, while OM, SIA and Ca^2+were major components in coarse particles. Moreover, secondary components, mainly SOA(secondary organic aerosol) and SIA,accounted for 46%-96% of each size bin in fine particles, which meant that secondary pollution existed all year. Sulfates and nitrates, primarily in the form of(NH4)2SO4, NH4NO3, Ca SO4, Na2SO4 and K2SO4, calculated by the model ISORROPIA II, were major components of the solid phase in fine particles. The PM concentration and size distribution were similar in the four seasons on non-haze days, while large differences occurred on haze days, which indicated seasonal variation of PM concentration and size distribution were dominated by haze days. The SIA concentrations and fractions of nearly all size bins were higher on haze days than on non-haze days, which was attributed to heterogeneous aqueous reactions on haze days in the four seasons.展开更多
基金part of the Science and Technology Plan Project in Zhengzhou funded by Henan Administration of Foreign Experts Affairs and Science and Technology Bureau of Zhengzhou City (grant no.094SYJH36069)support from Peking University and Taiwan Yunlin University of Science and Technology
文摘Zhengzhou is a developing city in China, that is heavily polluted by high levels of particulate matter. In this study, fine particulate matter (PM2.5) was collected and analyzed for their chemical composition (soluble ions, elements, elemental carbon (EC) and organic carbon (OC)) in an industrial district of Zhengzhou in 2010. The average concentrations of PM2.5 were 181, 122, 186 and 211 μg/m3 for spring, summer, autumn and winter, respectively, with an annual average of 175 μg/m3, far exceeding the PM2.5 regulation of USA National Air Quality Standards (15 μg/m3). The dominant components of PM2.5 in Zhengzhou were secondary ions (sulphate and nitrate) and carbon fractions. Soluble ions, total carbon and elements contributed 41%, 13% and 3% of PM2.5 mass, respectively. Soil dust, secondary aerosol and coal combustion, each contributing about 26%, 24% and 23% of total PM2.5 mass, were the major sources of PM2.5, according to the result of positive matrix factorization analysis. A mixed source of biomass burning, oil combustion and incineration contributed 13% of PM2.5. Fine particulate matter arising from vehicles and industry contributed about 10% and 4% of PM2.5, respectively.
基金supported by the National Natural Science Foundation of China (Nos. 41175018, 41475113)the special fund of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (No. LAPC-KF-2014-01)
文摘Size-resolved aerosol samples were collected by MOUDI in four seasons in 2007 in Beijing. The PM10 and PM1.8mass concentrations were 166.0 ± 120.5 and 91.6 ± 69.7 μg/m^3, respectively,throughout the measurement, with seasonal variation: nearly two times higher in autumn than in summer and spring. Serious fine particle pollution occurred in winter with the PM1.8/PM10 ratio of 0.63, which was higher than other seasons. The size distribution of PM showed obvious seasonal and diurnal variation, with a smaller fine mode peak in spring and in the daytime. OM(organic matter = 1.6 × OC(organic carbon)) and SIA(secondary inorganic aerosol) were major components of fine particles, while OM, SIA and Ca^2+were major components in coarse particles. Moreover, secondary components, mainly SOA(secondary organic aerosol) and SIA,accounted for 46%-96% of each size bin in fine particles, which meant that secondary pollution existed all year. Sulfates and nitrates, primarily in the form of(NH4)2SO4, NH4NO3, Ca SO4, Na2SO4 and K2SO4, calculated by the model ISORROPIA II, were major components of the solid phase in fine particles. The PM concentration and size distribution were similar in the four seasons on non-haze days, while large differences occurred on haze days, which indicated seasonal variation of PM concentration and size distribution were dominated by haze days. The SIA concentrations and fractions of nearly all size bins were higher on haze days than on non-haze days, which was attributed to heterogeneous aqueous reactions on haze days in the four seasons.