期刊文献+
共找到115篇文章
< 1 2 6 >
每页显示 20 50 100
Time series analysis-based seasonal autoregressive fractionally integrated moving average to estimate hepatitis B and C epidemics in China 被引量:1
1
作者 Yong-Bin Wang Si-Yu Qing +3 位作者 Zi-Yue Liang Chang Ma Yi-Chun Bai Chun-Jie Xu 《World Journal of Gastroenterology》 SCIE CAS 2023年第42期5716-5727,共12页
BACKGROUND Hepatitis B(HB)and hepatitis C(HC)place the largest burden in China,and a goal of eliminating them as a major public health threat by 2030 has been set.Making more informed and accurate forecasts of their s... BACKGROUND Hepatitis B(HB)and hepatitis C(HC)place the largest burden in China,and a goal of eliminating them as a major public health threat by 2030 has been set.Making more informed and accurate forecasts of their spread is essential for developing effective strategies,heightening the requirement for early warning to deal with such a major public health threat.AIM To monitor HB and HC epidemics by the design of a paradigmatic seasonal autoregressive fractionally integrated moving average(SARFIMA)for projections into 2030,and to compare the effectiveness with the seasonal autoregressive integrated moving average(SARIMA).METHODS Monthly HB and HC incidence cases in China were obtained from January 2004 to June 2023.Descriptive analysis and the Hodrick-Prescott method were employed to identify trends and seasonality.Two periods(from January 2004 to June 2022 and from January 2004 to December 2015,respectively)were used as the training sets to develop both models,while the remaining periods served as the test sets to evaluate the forecasting accuracy.RESULTS There were incidents of 23400874 HB cases and 3590867 HC cases from January 2004 to June 2023.Overall,HB remained steady[average annual percentage change(AAPC)=0.44,95%confidence interval(95%CI):-0.94-1.84]while HC was increasing(AAPC=8.91,95%CI:6.98-10.88),and both had a peak in March and a trough in February.In the 12-step-ahead HB forecast,the mean absolute deviation(15211.94),root mean square error(18762.94),mean absolute percentage error(0.17),mean error rate(0.15),and root mean square percentage error(0.25)under the best SARFIMA(3,0,0)(0,0.449,2)12 were smaller than those under the best SARIMA(3,0,0)(0,1,2)12(16867.71,20775.12,0.19,0.17,and 0.27,respectively).Similar results were also observed for the 90-step-ahead HB,12-step-ahead HC,and 90-step-ahead HC forecasts.The predicted HB incidents totaled 9865400(95%CI:7508093-12222709)cases and HC totaled 1659485(95%CI:856681-2462290)cases during 2023-2030.CONCLUSION Under current interventions,China faces enormous challenges to eliminate HB and HC epidemics by 2030,and effective strategies must be reinforced.The integration of SARFIMA into public health for the management of HB and HC epidemics can potentially result in more informed and efficient interventions,surpassing the capabilities of SARIMA. 展开更多
关键词 HEPATITIS seasonal autoregressive fractionally integrated moving average seasonal autoregressive integrated moving average Prediction EPIDEMIC Time series analysis
下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估
2
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节性回归移动平均和支持向量回归(sarima和SVR) 组合模型 协方差优选法
下载PDF
基于SARIMAX-SVR的光伏发电功率预测 被引量:1
3
作者 周鑫 李燕 +1 位作者 曾永辉 石鹏程 《电力系统及其自动化学报》 CSCD 北大核心 2024年第5期1-8,共8页
为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发... 为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发电功率预测方法。首先,采用相关性特征法聚类气象条件中关键气象因子,以消除数据冗余并降低ARIMAX模型的复杂性;其次,在ARIMAX模型中引入季节性因素,构建SARIMAX模型来捕捉数据的季节性变化;最后,使用SARIMAX模型的拟合残差其作为SVR模型的输入,进一步拟合数据的非线性。通过仿真算例分析表明,所提方法可显著提高光伏发电功率预测精度。 展开更多
关键词 光伏发电 功率预测 差分自回归移动平均 季节性因子 支持向量回归
下载PDF
基于DWT-SARIMA-LSTM的流感预测模型研究
4
作者 胡兆辉 陈兆学 《软件工程》 2024年第5期56-61,共6页
为提高流感预测模型的准确率,针对流感数据的季节性与波动性特点,提出利用离散小波分解(DWT)、季节性自回归综合移动平均模型(SARIMA)和长短期记忆神经网络(LSTM)综合建模,构建DWT-SARIMA-LSTM混合预测模型。首先,将流感数据分解为高频... 为提高流感预测模型的准确率,针对流感数据的季节性与波动性特点,提出利用离散小波分解(DWT)、季节性自回归综合移动平均模型(SARIMA)和长短期记忆神经网络(LSTM)综合建模,构建DWT-SARIMA-LSTM混合预测模型。首先,将流感数据分解为高频成分与低频成分,对低频成分使用SARIMA模型、高频成分使用LSTM模型分别进行预测;其次,将预测值融合得到最终的预测结果;最后,构建流行控制图预警模型。使用从中国香港卫生署官网获得的中国香港地区2010—2019年的流感数据对模型进行预测和验证,其MAE为0.3427,MAPE为8.0973%,RMSE为0.4632,预警模型的准确率为100%,该模型较于如ARIMA-LSTM等其他混合模型有更高的预测精度。 展开更多
关键词 流感预测 小波分解 季节性自回归综合移动平均模型 长短期记忆神经网络
下载PDF
融合SARIMA与BiLSTM的水利设施形变预测
5
作者 唐帅 杨涛 +2 位作者 皮明 张良 袁自祥 《现代雷达》 CSCD 北大核心 2024年第3期96-103,共8页
水利设施形变预测可以有效地判断水利设施的运行状态。水利设施安全监测数据是时间序列数据,既有趋势性又有季节性。为了获得更准确的预测结果,文中提出一种基于季节自回归差分移动平均(SARIMA)模型和双向长短时记忆(BiLSTM)网络的预测... 水利设施形变预测可以有效地判断水利设施的运行状态。水利设施安全监测数据是时间序列数据,既有趋势性又有季节性。为了获得更准确的预测结果,文中提出一种基于季节自回归差分移动平均(SARIMA)模型和双向长短时记忆(BiLSTM)网络的预测模型,以解决无法充分挖掘数据中正向与反向的关联进行预测的问题。该模型采用SARIMA模型预测变形数据中的线性分量,采用BiLSTM模型预测变形数据中的非线性分量,使得模型能够更好地提取历史数据中的非线性关系以及正向与反向关系从而提高预测准确度。结合某水电站4#引水涵洞监测数据,使用SARIMA-BiLSTM模型对裂缝计开合度时间序列进行了预测,并与反向传播神经网络模型、SARIMA模型和SARIMA-LSTM模型的预测结果进行对比,比对结果证明所提方法有效地提高了预测精度。 展开更多
关键词 水利设施监测 时间序列预测 趋势性 季节自回归差分移动平均模型 双向长短期记忆网络
下载PDF
使用快速傅里叶变换优化周期参数的EMD-FFT-SARIMA光伏发电预测模型
6
作者 熊川羽 廖晓红 +5 位作者 何诗英 陈然 王巍 臧楠 王瀛 肖梦涵 《强激光与粒子束》 CAS CSCD 北大核心 2024年第8期117-123,共7页
根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得... 根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得到的各固有本征模态函数(IMF)分量周期计算问题,提出加入快速傅里叶变换(FFT)的周期计算方法,建立EMD-FFT-SARIMA光伏发电功率预测模型。再将每个IMF对应的预测结果进行叠加重构得到最终的预测结果。通过预测结果的误差计算可以发现,加入FFT环节后均方根误差(RMSE)从120.6 MW下降到19.3 MW,平均绝对误差(MAE)从52.87 MW下降到12.3 MW。 展开更多
关键词 经验模式分解 季节性差分自回归移动平均模型 周期计算 固有本征模态函数信号分量 快速傅里叶变换 光伏发电预测
下载PDF
基于SARIMA模型的上海市中心城区共享单车需求预测
7
作者 范棪堃 《信息与电脑》 2024年第5期210-214,共5页
无桩式共享单车的出现与推广在减少碳排放的同时,带来了道路拥堵问题。如何高效、准确地进行交通流量预测已经成为人们关注的热点。利用2016年8月上海市中心城区摩拜共享单车数据,利用季节性差分自回归移动平均模型(Seasonal Autoregres... 无桩式共享单车的出现与推广在减少碳排放的同时,带来了道路拥堵问题。如何高效、准确地进行交通流量预测已经成为人们关注的热点。利用2016年8月上海市中心城区摩拜共享单车数据,利用季节性差分自回归移动平均模型(Seasonal Autoregressive Integrated Moving Average Model,SARIMA模型)进行模拟和预测,再通过折线图的方式揭示共享单车需求量与时间之间的变化关系。研究发现,SARIMA(0,1,3)×(0,1,0)_(84)模型能够有效预测上海市中心城区共享单车的需求量。预测交通流量,可以缓解城市主干道的拥堵状况,提高市民的生活质量。同时,预测通勤需求可以平衡供需关系,为运营企业和用户提供更高效的服务,为政府规划提供决策依据。 展开更多
关键词 季节性差分自回归移动平均模型(sarima模型) 交通流量预测 共享单车
下载PDF
ETS和SARIMA流行趋势中的性能比较模型在预测北京市猩红热
8
作者 柴峰 《科技与健康》 2024年第5期125-128,共4页
收集2004—2019年北京市猩红热月发病人数和人口学资料,采用描述性统计方法和Joinpoint回归调查猩红热的流行病学变化趋势。北京市猩红热发病的平均年度百分比变化为(AAPC=1.866,95%CI:-2.968~6.941;t=0.816,P=0.428),流行趋势总体保持... 收集2004—2019年北京市猩红热月发病人数和人口学资料,采用描述性统计方法和Joinpoint回归调查猩红热的流行病学变化趋势。北京市猩红热发病的平均年度百分比变化为(AAPC=1.866,95%CI:-2.968~6.941;t=0.816,P=0.428),流行趋势总体保持稳定,每年的4—6月和11—12月为发病高峰,呈双季节模式。最优SARIMA模型和最优ETS模型预测的平均绝对误差(MAD)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)、平均误差率(MER)、方根百分比误差(RMSPE)五个误差指标分别为0.586、0.623、0.751、0.296、0.785和0.318、0.282、0.438、0.282、0.338,可见ETS模型的预测准确性高于SARIMA模型,可用来对北京市猩红热流行趋势进行预测预警,从而为猩红热动态精准化防控提供参考依据。 展开更多
关键词 基于状态空间的指数平滑模型 季节性差分自回归滑动平均模型 猩红热 预测 性能比较
下载PDF
基于SARIMA预警模型的水位监测效果分析与研究
9
作者 张健 《水利科技与经济》 2024年第4期23-28,共6页
为了提高城市水位监测的准确性及洪涝等灾害的预警能力,提出基于季节性自回归积分滑动平均(Seasonal auto-regressive integral moving average, SARIMA)模型的水位监测预警模型。该模型综合了自回归模型、移动平均模型和季节性差分模型... 为了提高城市水位监测的准确性及洪涝等灾害的预警能力,提出基于季节性自回归积分滑动平均(Seasonal auto-regressive integral moving average, SARIMA)模型的水位监测预警模型。该模型综合了自回归模型、移动平均模型和季节性差分模型,适用于分析和预测具有季节性和非平稳特征的时间序列数据。结果显示,基于SARIMA预警模型的水位监测系统,对城市周边的水位监测拟合效果较好,可对城市周边水位进行有效监测,提高应对城市内涝灾害的预警效果。 展开更多
关键词 季节性自回归积分滑动平均模型 水位监测 水位预警 数据填充
下载PDF
基于SARIMA模型的高校人工智能就业趋势研究
10
作者 王玉萍 冯青文 《信息与电脑》 2023年第3期99-101,共3页
文章利用大数据相关技术,采用Nagao算法、单尺度Retinex(Single Scale Retinex,SSR)算法、季节性差分自回归滑动平均(Seasonal Autoregressive Integrated Moving Average,SARIMA)模型,对人工智能专业的就业趋势和供需关系进行分析和预... 文章利用大数据相关技术,采用Nagao算法、单尺度Retinex(Single Scale Retinex,SSR)算法、季节性差分自回归滑动平均(Seasonal Autoregressive Integrated Moving Average,SARIMA)模型,对人工智能专业的就业趋势和供需关系进行分析和预测。研究表明,人工智能专业的就业形势较为乐观,未来几年将持续保持高速增长。同时,及时掌握人工智能专业的就业趋势和供需关系,提高毕业生的实践能力,加强对人工智能专业毕业生就业市场的研究,并深入挖掘人工智能技术的应用价值,以期为社会提供更多的高质量人工智能人才。 展开更多
关键词 Nagao算法 季节性差分自回归滑动平均(sarima)模型 单尺度Retinex(SSR)算法 人工智能 就业趋势
下载PDF
综合岭回归和SARIMA方法在桥梁健康监测数据分析中的应用 被引量:3
11
作者 谌桢文 常军 《科学技术与工程》 北大核心 2023年第20期8846-8853,共8页
桥梁健康监测系统的实测数据普遍存在缺失问题,为了保证桥梁监测数据的完整性,更好地预测桥梁未来的健康状况,提出了一种具有样本内和样本外预测能力的组合模型。样本外预测可以基于现在数据预测未来的桥梁健康状态,样本内回归用于填补... 桥梁健康监测系统的实测数据普遍存在缺失问题,为了保证桥梁监测数据的完整性,更好地预测桥梁未来的健康状况,提出了一种具有样本内和样本外预测能力的组合模型。样本外预测可以基于现在数据预测未来的桥梁健康状态,样本内回归用于填补传感器数据中的缺失值,确保桥梁监测数据的完整性。由于不同位置处相同类型传感器的相关性较强,首先利用岭回归(ridge regression,RR)解决共线性问题,建立各传感器数据之间的关联,并预测缺失数据。接着引入季节性差分自回归滑动平均(seasonal autoregressive integrated moving average,SARIMA)方法,利用其样本外预测能力并结合岭回归方法预测桥梁未来运行数据。最后,将该方法应用于实桥中,验证了其有效性,为传感器数据填补以及预测桥梁未来状态提供了有效的预测模型。 展开更多
关键词 大数据 缺失数据填补 数据预测 岭回归(RR) 季节性差分自回归滑动平均(sarima)
下载PDF
基于SARIMA模型的某省三级医院骨折住院患者量预测分析
12
作者 赵钦康 李越 《中国医疗管理科学》 2023年第1期77-82,共6页
目的建立骨折住院患者量的预测模型,探索骨折住院患者量的季节变动规律及未来趋势,以合理安排资源、提高医疗工作效率。方法收集山西省汾阳医院2017年6月至2022年3月骨折住院患者的临床资料,应用R 3.5.2软件进行时间序列分析和季节性自... 目的建立骨折住院患者量的预测模型,探索骨折住院患者量的季节变动规律及未来趋势,以合理安排资源、提高医疗工作效率。方法收集山西省汾阳医院2017年6月至2022年3月骨折住院患者的临床资料,应用R 3.5.2软件进行时间序列分析和季节性自回归移动平均(SARIMA)模型的建模拟合,并用其对住院患者量进行定量预测和验证。结果共纳入2563例患者,平均年龄53.43岁,男、女之间的年龄分布差异有统计学意义(t=-17.798,P<0.001)。分月记录骨折住院患者量,时间序列分析提示住院患者量每年有2个高峰期,即5月和8月。使用2018年1月至2021年7月的训练集数据建立SARIMA(0,0,1)(1,0,0)12模型(白噪声检验,P=0.806),对2021年8月至2022年3月的预测集数据进行短期预测,RMSE=0.24,MAPE=149.61,预测值与实际值的相对误差范围在1.81%~8.60%。结论SARIMA模型拟合骨折住院患者量变化趋势较佳,可为医院或专业科室管理者提供决策依据,同时也可为骨折防治措施的制定提供参考。 展开更多
关键词 骨折 住院患者量 时间序列分析 季节性自回归移动平均模型 预测
下载PDF
基于SARIMA模型的城市热岛季节性时序预测研究 被引量:2
13
作者 管亚平 《科学技术创新》 2023年第7期111-114,共4页
针对目前出现的极端气候问题,本研究引入SARIMA季节性时序预测模型来预测城市热岛。首先利用单窗算法进行地表温度反演并进行精度验证;然后采用SARIMA模对地表温度进行拟合和未来温度变化预测。基于季节性差分自回归移动平均模型,结果表... 针对目前出现的极端气候问题,本研究引入SARIMA季节性时序预测模型来预测城市热岛。首先利用单窗算法进行地表温度反演并进行精度验证;然后采用SARIMA模对地表温度进行拟合和未来温度变化预测。基于季节性差分自回归移动平均模型,结果表明SARIMA模型的城市热岛季节性时序拟合和预测效果具有较高的可靠性和准确性。 展开更多
关键词 sarima模型 时序预测 地表温度 城市热岛 季节性差分自回归移动平均模型
下载PDF
基于车流量数据的SARIMA和LSTM组合模型的比较研究
14
作者 李贺宇 南润 胡茜 《长春工业大学学报》 CAS 2023年第1期72-77,共6页
针对同时具有周期性、长记忆性等多种特征的车流量数据,单一地SARIMA或LSTM模型往往拟合效果不理想,而其组合模型可以弥补单一模型的不足。结合线性和非线性预测方法,文中分别建立了三个SARIMA-LSTM组合模型,随后,对车流量数据进行了预... 针对同时具有周期性、长记忆性等多种特征的车流量数据,单一地SARIMA或LSTM模型往往拟合效果不理想,而其组合模型可以弥补单一模型的不足。结合线性和非线性预测方法,文中分别建立了三个SARIMA-LSTM组合模型,随后,对车流量数据进行了预测分析,通过与SARIMA、LSTM两种单模型拟合效果的比较分析表明:1)对含周期性和长记忆性的数据,组合模型的预测效果更优;2)基于MA滤波方法的组合模型三比其他两种方法在提升模型预测精度上表现更好。 展开更多
关键词 季节性差分自回归滑动平均模型(sarima) 长短期记忆网络(LSTM) MA滤波 车流量预测
下载PDF
基于水电储能调节的风光水发电联合优化调度策略
15
作者 何奇 张宇 +4 位作者 邓玲 王海亮 谢琼瑶 王春 胡家旗 《广东电力》 北大核心 2024年第3期12-24,共13页
为缓解新能源装机容量扩大引起的弃风弃光现象,在已有梯级水电上下电站之间加入储能泵站,提出风光水储短期优化调度策略。构建以风光水储系统负荷跟踪误差最小、梯级水电站发电量最大和梯级水电站发电耗水量最小的多目标优化调度模型;... 为缓解新能源装机容量扩大引起的弃风弃光现象,在已有梯级水电上下电站之间加入储能泵站,提出风光水储短期优化调度策略。构建以风光水储系统负荷跟踪误差最小、梯级水电站发电量最大和梯级水电站发电耗水量最小的多目标优化调度模型;提出基于季节性自回归移动平均(seasonal auto-regressive lntegrated moving average, SARIMA)模型和Copula函数的风光出力预测模型作为优化调度模型的边界条件,通过SARIMA预测模型将风光出力历史数据分解为季节性分量、趋势分量以及随机噪声余项进行全天96个调度时段风光出力预测,并叠加上基于Copula函数生成风光出力预测误差,然后通过拉丁超立方采样以及K-means聚类进行场景生成和缩减得到5个风光出力场景。选取风光典型日出力数据为例进行算例分析,算例结果表明:所提预测模型较SARIMA模型可以显著提高预测准确度,模型预测风光出力均方根误差从33.34、229.49 MW分别下降至0.697、9.534 MW;所提优化调度策略可以在全年丰、平、枯水期有效减少弃风弃光现象,并可将过剩新能源中的50%转化为上级水库储存水能。 展开更多
关键词 风光出力预测 季节性自回归移动平均模型 COPULA函数 风光水储系统 负荷跟踪
下载PDF
北京市东城区2009—2019年蝇类生态学监测结果分析及其预测方法探讨
16
作者 魏绪强 李秋红 +3 位作者 马卓 阙燃 王云波 周小洁 《中华卫生杀虫药械》 CAS 2024年第3期262-267,共6页
目的 掌握北京市东城区2009—2019年蝇种类、密度、分布及其季节消长规律,探讨基于生态学监测的蝇类密度预测方法,为东城区蝇类预测与科学防控提供依据。方法 收集整理东城区2009—2019年蝇类生态学监测数据并进行分析;利用MATLAB R2018... 目的 掌握北京市东城区2009—2019年蝇种类、密度、分布及其季节消长规律,探讨基于生态学监测的蝇类密度预测方法,为东城区蝇类预测与科学防控提供依据。方法 收集整理东城区2009—2019年蝇类生态学监测数据并进行分析;利用MATLAB R2018b软件构建的季节性差分自回归移动平均模型(SARIMA)对2019年4—10月的蝇类密度进行预测并与实际监测值进行比较,验证模型预测效果。结果 2009—2019年东城区各生态学监测点蝇类年平均密度为7.09只/笼,优势蝇种为麻蝇科,占捕获蝇总数的56.82%,占比超过5%以上的蝇种类依次为厩腐蝇(11.74%)、家蝇(10.17%)、丝光绿蝇(8.99%)和大头金蝇(6.93%);不同生境中,宾馆饭店蝇类密度最高,为11.86只/笼,餐饮外环境最低,为2.20只/笼,麻蝇科在不同生境中均为优势种群;蝇类密度高峰主要出现在7月和8月。基于历史生态学监测数据构建的最优模型SARIMA(0,1,4)(2,1,3)12预测2019年4—10月的蝇类密度与实际密度基本一致,实际监测值均落在预测值95%置信区间内,模型评价指标均方根误差(RMSE)和平均绝对误差(MAE)分别为1.379和1.014,预测效果较好。结论 2009—2019年北京市东城区以麻蝇科为优势种群,宾馆饭店是蝇类防控的重点场所,活动高峰主要出现在7—8月;通过对SARIMA模型效果评价,该方法可用于蝇类密度短期变化趋势预测。 展开更多
关键词 蝇密度 季节性差分自回归移动平均模型 预测 密度监测
下载PDF
基于季节ARIMA模型对某三级综合性医院门诊量的预测研究
17
作者 陈文娟 林建潮 《中国医院统计》 2024年第3期185-188,共4页
目的 通过建立季节ARIMA模型,对浙江省某三级综合性医院门诊量进行预测,为医院合理配备门诊人力资源提供依据。方法 以2013年1—6月浙江省某医院门诊量数据为基线,利用SPSS软件构建季节ARIMA模型,对2023年7—12月的门诊量进行预测,通过... 目的 通过建立季节ARIMA模型,对浙江省某三级综合性医院门诊量进行预测,为医院合理配备门诊人力资源提供依据。方法 以2013年1—6月浙江省某医院门诊量数据为基线,利用SPSS软件构建季节ARIMA模型,对2023年7—12月的门诊量进行预测,通过对比门诊量实测值,评价季节ARIMA模型预测门诊人次的精度。结果 该综合性医院门诊量呈现逐年上升趋势,并呈现周期性波动的特征。拟合的最优季节ARIMA模型为ARIMA(0,1,1)(1,0,1)12,BIC(贝叶斯信息准则)为5.273,MAPE(平均绝对百分误差)为14.265,R2(模块决定系数)为0.408,总体相对误差为1.83%,预测结果良好。结论 季节ARIMA模型较好地模拟了该三级综合性医院门诊量在时间序列上的变化趋势,为该院门诊量的短期预测提供理论依据。 展开更多
关键词 季节ARIMA 门诊人次 时间序列分析 预测模型
下载PDF
基于SARIMA模型和条件植被温度指数的干旱预测 被引量:23
18
作者 田苗 王鹏新 +1 位作者 韩萍 张树誉 《农业机械学报》 EI CAS CSCD 北大核心 2013年第2期109-116,共8页
基于时间序列遥感数据反演的条件植被温度指数(VTCI)干旱监测结果,应用季节性求和自回归移动平均模型(SARIMA)对关中平原进行了分区域干旱预测建模,得到了2009年4月上旬至5月下旬每旬1步、2步和3步共18旬的预测结果,并分析了预测精度。... 基于时间序列遥感数据反演的条件植被温度指数(VTCI)干旱监测结果,应用季节性求和自回归移动平均模型(SARIMA)对关中平原进行了分区域干旱预测建模,得到了2009年4月上旬至5月下旬每旬1步、2步和3步共18旬的预测结果,并分析了预测精度。结果表明,SARIMA模型的预测精度随着预测步数的增加而降低,6旬1步预测结果的绝对误差频数分布基本是单峰分布,主要分布在-0.2到0.2之间;6旬2步预测结果的绝对误差频数分布出现双峰分布,3步预测结果绝对误差分布分散,且误差变大。通过分析干旱的时空分布规律,发现关中平原地区干旱具有较明显的区域特征,且1步预测和2步预测结果的干旱时空分布与监测结果较吻合,3步预测结果的不确定性较大,由此得出SARIMA模型适用于关中平原VTCI 1~2步预测研究的结论。 展开更多
关键词 关中平原 干旱预测 条件植被温度指数 季节性求和自回归移动平均模型
下载PDF
SARIMA模型在长沙市肺结核发病预测中的应用 被引量:13
19
作者 谢赐福 王孝君 +2 位作者 熊姿 宋丽新 许林勇 《中国卫生统计》 CSCD 北大核心 2018年第6期859-862,共4页
目的探讨SARIMA模型在肺结核发病预测中的适用性,为长沙市肺结核防控提供参考。方法利用2005年1月-2016年12月长沙市肺结核月发病数构建SARIMA模型,以2017年1-12月的月发病数评价模型的预测效果,并采用构建的最优模型对2018年长沙市肺... 目的探讨SARIMA模型在肺结核发病预测中的适用性,为长沙市肺结核防控提供参考。方法利用2005年1月-2016年12月长沙市肺结核月发病数构建SARIMA模型,以2017年1-12月的月发病数评价模型的预测效果,并采用构建的最优模型对2018年长沙市肺结核月发病情况进行预测。结果长沙市肺结核月发病数具有明显的季节性特征,最优预测模型为SARIMA(0,1,1)(0,1,1)12,其AIC=1436. 703,模型残差为白噪声(χ~2=0. 119,P=0. 731)。该模型的预测值与实际值的平均绝对百分误差为21. 69%,预测效果较为可靠。预计2018年长沙市肺结核的月平均发病数为332. 34例,发病水平与2017年接近,但总体略有下降。结论 SARIMA(0,1,1)(0,1,1)_(12)拟合效果较好,可用于长沙市肺结核月发病数的短期预测。 展开更多
关键词 肺结核 季节自回归求和移动平均模型 时间序列 预测
下载PDF
SARIMA模型在长治市肺结核预测中的应用 被引量:4
20
作者 张喜红 李慧 +1 位作者 曹文君 崔永梅 《中国医科大学学报》 CAS CSCD 北大核心 2018年第7期585-588,共4页
目的应用时间序列季节自回归求和滑动平均(SARIMA)模型探讨长治市肺结核的发病规律,为防控肺结核发生提供依据。方法收集长治市2010年1月至2017年12月肺结核逐月发病数,应用Eviews3.1对2010年1月至2017年6月肺结核发病数建立SARIMA模型... 目的应用时间序列季节自回归求和滑动平均(SARIMA)模型探讨长治市肺结核的发病规律,为防控肺结核发生提供依据。方法收集长治市2010年1月至2017年12月肺结核逐月发病数,应用Eviews3.1对2010年1月至2017年6月肺结核发病数建立SARIMA模型;利用所建SARIMA模型对2017年7月至12月肺结核发病数进行预测,并与实际值对比来评价模型预测效果。利用模型预测长治市2018年1到12月肺结核发病数。结果建立模型SARIMA(2,1,0)×(1,0,1)12,表达式为(1-B)(1+0.657B+0.279B^2)(1-0.906B^12)y_1=(1-0.885B^12)ε_1,y_1=ln(x_1),其中ε_1~WN(0,0,1272),该模型是预测长治市肺结核发病人数的合适模型,2017年7月至12月预测值平均相对误差为5.96%。结论建立了时间序列模型SARIMA(2,1,0)×(1,0,1)12来总结长治市肺结核的发病规律,并有效预测肺结核发病人数。 展开更多
关键词 季节自回归求和滑动平均模型 时间序列 肺结核 预测
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部