期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:16
1
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving average(ARIMA)
下载PDF
A Study of Wind Statistics Through Auto-Regressive and Moving-Average (ARMA) Modeling 被引量:1
2
作者 John Z.YIM(尹彰) +1 位作者 ChunRen CHOU(周宗仁) 《China Ocean Engineering》 SCIE EI 2001年第1期61-72,共12页
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu... Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made. 展开更多
关键词 auto-regressive and Moving-Average (ARMA) modeling probability distributions extreme wind speeds
下载PDF
Parametric SNR Estimation Based on Auto-Regressive Model in AWGN Channels 被引量:1
3
作者 Dan-Ping Bai Qun Wan Xian-Sheng Guo Yan Wang 《Journal of Electronic Science and Technology of China》 2008年第1期21-24,共4页
Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the ... Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the received signal in additive white Gauss noise(AWGN)channel.Then a parametric SNR estimation algorithm is proposed by taking advantage of the AR model information of the received signal.The simulation results show that the proposed parametric method has better performance than the conventional frequency doma in method in case of AWGN channel. 展开更多
关键词 auto-regressive model AWGN channel model information SNR (Signal-to-noise ratio) estimation.
下载PDF
Optimal zero-crossing group selection method of the absolute gravimeter based on improved auto-regressive moving average model
4
作者 牟宗磊 韩笑 胡若 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期347-354,共8页
An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency... An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter. 展开更多
关键词 absolute gravimeter laser interference fringe Fourier series fitting honey badger algorithm mul-tiplicative auto-regressive moving average(MARMA)model
下载PDF
Application of Auto-regressive Linear Model in Understanding the Effect of Climate on Malaria Vectors Dynamics in the Three Gorges Reservoir
5
作者 WANG Duo Quan GU Zheng Cheng +2 位作者 ZHENG Xiang GUO Yun TANG Lin Hua 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2014年第10期811-814,共4页
It is important to understand the dynamics of malaria vectors in implementing malaria control strategies. Six villages were selected from different sections in the Three Gorges Reservoir fc,r exploring the relationshi... It is important to understand the dynamics of malaria vectors in implementing malaria control strategies. Six villages were selected from different sections in the Three Gorges Reservoir fc,r exploring the relationship between the climatic |:actors and its malaria vector density from 1997 to 2007 using the auto-regressive linear model regressi^n method. The result indicated that both temperature and precipitation were better modeled as quadratic rather than linearly related to the density of Anopheles sinensis. 展开更多
关键词 Application of auto-regressive Linear model in Understanding the Effect of Climate on Malaria Vectors Dynamics in the Three Gorges Reservoir AUTO
下载PDF
Settlement Prediction for Buildings Surrounding Foundation Pits Based on a Stationary Auto-regression Model 被引量:3
6
作者 TIAN Lin-ya HUA Xi-sheng 《Journal of China University of Mining and Technology》 EI 2007年第1期78-81,共4页
To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitori... To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm, indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits. 展开更多
关键词 foundation pit BUILDING settlement monitoring datum stability stationary auto-regression model settlement prediction
下载PDF
Parameter Estimation of Time-Varying ARMA Model 被引量:3
7
作者 王文华 韩力 王文星 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期131-134,共4页
The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedbac... The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method. 展开更多
关键词 auto-regressive moving-average (ARMA) model feedback linear estimation basis time-varying function spectral estimation
下载PDF
EXPERIMENTS WITH SHORT-TERM CLIMATE PREDICTION MODELS ON SSTA OVER THE NINO OCEANIC REGION 被引量:1
8
作者 丁裕国 江志红 朱艳峰 《Journal of Tropical Meteorology》 SCIE 1999年第1期1-8,共8页
Predictions of averaged SST monthly anomalous series for Nino 1-4 regions in the context of auto-adaptive filter are made using a model combining the singular spectrum analysis (SSA) and auto-regression (AR). The resu... Predictions of averaged SST monthly anomalous series for Nino 1-4 regions in the context of auto-adaptive filter are made using a model combining the singular spectrum analysis (SSA) and auto-regression (AR). The results have shown that the scheme is efticient in forward forecaning of the strong ENSO event in 1997- 1998, it is of high reliability in retrospective forecasting of three corresponding historical strong ENSO events. It is seen that the scheme has stable skill and large accuracy for experiments of both independent samples and real cases.With modifications, the SSA-AR scheme is expected to become an efficient model in routine predictions of ENSO. 展开更多
关键词 SINGULAR Spectrum Analysis ENSO EVENT CLIMATE prediction auto-regression model
下载PDF
ARMA-GM combined forewarning model for the quality control
9
作者 WangXingyuan YangXu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期224-227,共4页
Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality cata... Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective. 展开更多
关键词 auto-regressive moving average model (ARMA) grey system model (GM) combined forewarning model quality control.
下载PDF
Auto-Regressive Models of Non-Stationary Time Series with Finite Length 被引量:7
10
作者 费万春 白伦 《Tsinghua Science and Technology》 SCIE EI CAS 2005年第2期162-168,共7页
To analyze and simulate non-stationary time series with finite length, the statistical characteris- tics and auto-regressive (AR) models of non-stationary time series with finite length are discussed and stud- ied. ... To analyze and simulate non-stationary time series with finite length, the statistical characteris- tics and auto-regressive (AR) models of non-stationary time series with finite length are discussed and stud- ied. A new AR model called the time varying parameter AR model is proposed for solution of non-stationary time series with finite length. The auto-covariances of time series simulated by means of several AR models are analyzed. The result shows that the new AR model can be used to simulate and generate a new time series with the auto-covariance same as the original time series. The size curves of cocoon filaments re- garded as non-stationary time series with finite length are experimentally simulated. The simulation results are significantly better than those obtained so far, and illustrate the availability of the time varying parameter AR model. The results are useful for analyzing and simulating non-stationary time series with finite length. 展开更多
关键词 time series analysis auto-covariance NON-STATIONARY auto-regressive model size curve of cocoon filament
原文传递
A novel approach to equipment health management based on auto-regressive hidden semi-Markov model(AR-HSMM) 被引量:5
11
作者 DONG Ming 《Science in China(Series F)》 2008年第9期1291-1304,共14页
As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM techno... As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM technology and prac- tice in industry is effective diagnostics and prognostics. Recently, a pattern recog- nition technique called HMM (hidden Markov model) was widely used in many fields. However, due to some unrealistic assumptions, diagnositic results from HMM were not so good, and it was difficult to use HMM directly for prognosis. By relaxing the unrealistic assumptions in HMM, this paper presents a novel approach to equip- ment health management based on auto-regressive hidden semi-Markov model (AR-HSMM). Compared with HMM, AR-HSMM has three advantages: 1) It allows explicitly modeling the time duration of the hidden states and therefore is capable of prognosis. 2) It can relax observations' independence assumption by accom- modating a link between consecutive observations. 3) It does not follow the unre- alistic Markov chain's memoryless assumption and therefore provides more pow- erful modeling and analysis capability for real problems. To facilitate the computa- tion in the proposed AR-HSMM-based diagnostics and prognostics, new forward- backward variables are defined and a modified forward-backward algorithm is de- veloped. The evaluation of the proposed methodology was carried out through a real world application case study: health diagnosis and prognosis of hydraulic pumps in Caterpillar Inc. The testing results show that the proposed new approach based on AR-HSMM is effective and can provide useful support for the decision- making in equipment health management. 展开更多
关键词 auto-regressive hidden semi-Markov model DIAGNOSIS PROGNOSIS Markov model
原文传递
China's Energy Consumption Forecasting by GMDH Based Auto-Regressive Model 被引量:3
12
作者 XIE Ling XIAO Jin +2 位作者 HU Yi ZHAO Hengjun XIAO Yi 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第6期1332-1349,共18页
It is very significant for us to predict future energy consumption accurately. As for China's energy consumption annual time series, the sample size is relatively small. This paper combines the traditional auto-re... It is very significant for us to predict future energy consumption accurately. As for China's energy consumption annual time series, the sample size is relatively small. This paper combines the traditional auto-regressive model with group method of data handling(GMDH) suitable for small sample prediction, and proposes a novel GMDH based auto-regressive(GAR) model. This model can finish the modeling process in self-organized manner, including finding the optimal complexity model, determining the optimal auto-regressive order and estimating model parameters. Further, four different external criteria are proposed and the corresponding four GAR models are constructed. The authors conduct empirical analysis on three energy consumption time series, including the total energy consumption, the total petroleum consumption and the total gas consumption. The results show that AS-GAR model has the best forecasting performance among the four GAR models, and it outperforms ARIMA model, BP neural network model, support vector regression model and GM(1, 1) model.Finally, the authors give the out of sample prediction of China's energy consumption from 2014 to 2020 by AS-GAR model. 展开更多
关键词 auto-regressive model energy demand prediction GMDH small sample forecasting
原文传递
Parametric modeling of hypersonic ballistic data based on time varying auto-regressive model 被引量:3
13
作者 HU YuDong LI JunLong +2 位作者 ZHANG Zhao JING WuXing GAO ChangSheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第8期1396-1405,共10页
For describing target motion in hypersonic vehicle defense,a parametric analyzing and modeling method on ballistic data is proposed based on time varying auto-regressive method.Ballistic data are regarded as non-stati... For describing target motion in hypersonic vehicle defense,a parametric analyzing and modeling method on ballistic data is proposed based on time varying auto-regressive method.Ballistic data are regarded as non-stationary random signal,where the hidden internal law is studied.Firstly,ballistic data are decomposed into smooth linear trend signal and non-stationary periodic skip signal with ensemble empirical mode decomposition method to avoid mutual interference between different modal data.Secondly,the linear trend signal and the periodic skip signal are modeled separately.The linear trend signal is approximated by power function regressive estimator and the periodic skip signal is modeled based on time varying auto-regressive method.In order to determine optimal model orders,a novel method is presented based on information theoretic criteria and the criteria of minimizing the mean absolute error.Finally,the consistency test is conducted by investigating the time-frequency spectrum characteristics and statistical properties of outputs of the parametric model established above and dynamics model under the same initial condition.Simulation results demonstrate that the parametric model established by the proposed method shares a high consistency with the original dynamics model. 展开更多
关键词 hypersonic vehicle parametric modeling ballistic data decomposition time varying auto-regressive periods drift
原文传递
Tracking of time-evolving sound speed profiles with an auto-regressive state-space model 被引量:4
14
作者 JIN Liling LI Jianlong XU Wen 《Chinese Journal of Acoustics》 CSCD 2017年第3期302-312,共11页
An approach for time-evolving sound speed profiles tracking in shallow water is discussed. The inversion of time-evolving sound speed profiles is modeled as a state-space estimation problem, which includes a state equ... An approach for time-evolving sound speed profiles tracking in shallow water is discussed. The inversion of time-evolving sound speed profiles is modeled as a state-space estimation problem, which includes a state equation for predicting the time-evolving sound speed profile and a measurement equation for incorporating local acoustic measurements. In the paper, auto-regression (AR) method is introduced to obtain a high-order AR evolution model of the sound speed field time variations, and the ensemble Kalman filter is utilized to track the sound speed field. To validate the approach, the accuracy in sound speed estimation is analyzed via a numerical implementation using the ASIAEX experimental environment and the sound velocity measurement data. Compared with traditional approaches based on the state evolution represented as a random walk, simulation results show the proposed AR method can effectively reduce the tracking errors of sound speed, and still keep good tracking performance at low signal-to-noise ratios. 展开更多
关键词 TIME Tracking of time-evolving sound speed profiles with an auto-regressive state-space model SSP ENKF AR
原文传递
Time-varying parameter auto-regressive models for autocovariance nonstationary time series 被引量:2
15
作者 FEI WanChun BAI Lun 《Science China Mathematics》 SCIE 2009年第3期577-584,共8页
In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the t... In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the time-unvarying order TVPAR model and the time-varying order TV-PAR model for autocovariance nonstationary time series. Related minimum AIC (Akaike information criterion) estimations are carried out. 展开更多
关键词 autocovariance nonstationary time series time-varying parameter time-varying order auto-regressive model minimum AIC estimation 37M10 68Q10
原文传递
西藏拉萨河径流预测方法研究 被引量:10
16
作者 吴滔 袁鹏 +2 位作者 戴露 丁义 谢珊 《水利科技与经济》 2005年第2期77-79,113,共4页
 本文介绍了人工神经网络模型、分期平稳自回归模型、一阶季节性自回归模型这三种径流预测模型的基本原理,并且利用西藏拉萨河拉萨站1956至1968年,1973年至2000年41年的月平均流量资料对月径流进行预测和比较,得出BP-人工神经网络模型...  本文介绍了人工神经网络模型、分期平稳自回归模型、一阶季节性自回归模型这三种径流预测模型的基本原理,并且利用西藏拉萨河拉萨站1956至1968年,1973年至2000年41年的月平均流量资料对月径流进行预测和比较,得出BP-人工神经网络模型是相对于其它两种方法更适合对拉萨河径流进行预测的方法。 展开更多
关键词 拉萨河 径流预测 西藏 利用 季节性 人工神经网络模型 资料 月径流 平均流量
下载PDF
山东省中医类医院卫生人力资源需求预测 被引量:7
17
作者 楚美金 徐文 马漫遥 《中国卫生资源》 CSCD 北大核心 2023年第4期404-409,416,共7页
目的了解山东省中医类医院卫生人力资源的现状,预测卫生人力资源未来的需求量并提出合理建议,以期为相关部门制定中医药人力资源规划提供依据和数据支持。方法运用差分自回归移动平均(auto-regressive moving average,ARIMA)模型、灰色... 目的了解山东省中医类医院卫生人力资源的现状,预测卫生人力资源未来的需求量并提出合理建议,以期为相关部门制定中医药人力资源规划提供依据和数据支持。方法运用差分自回归移动平均(auto-regressive moving average,ARIMA)模型、灰色系统预测模型(grey system forecasting model,GM)中的GM(1,1)模型以及两者的线性组合模型预测2021—2025年山东省中医类医院卫生人力资源需求量,比较不同模型预测的精准度。结果组合模型的系统误差小,预测效果最好;卫生技术人员、执业(助理)医师、中医类别执业(助理)医师、注册护士、药师(士)及中药师(士)2025年对应的人力资源预测值分别是107457人、43304人、22807人、51372人、5718人、3242人。结论山东省中医类别执业(助理)医师数量储备充足,但中药师(士)相对短缺,人才结构不合理,医护比有待优化。建议政府适当地增加中药师(士)的编制,促进执业(助理)医师与中药师(士)平衡发展;增加对中医类医院的财政拨款,加强人才引进力度,创新人才培养机制,优化山东省中医药人才结构;制定科学合理的排班制度,提高护士的社会地位,进一步优化医护比。 展开更多
关键词 差分自回归移动平均模型auto-regressive moving average model ARIMA model GM(1 1)模型GM(1 1)model 组合模型combined model 中医药人力资源Chinese medicine human resources
下载PDF
Application of artificial neural networks in optimal tuning of tuned mass dampers implemented in high-rise buildings subjected to wind load 被引量:8
18
作者 Meysam Ramezani Akbar Bathaei Amir K.Ghorbani-Tanha 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期903-915,共13页
High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an ef... High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building. 展开更多
关键词 artificial neural networks tuned mass damper wind load auto-regressive model optimal frequency anddamping
下载PDF
Forecasting Gas Consumption Based on a Residual Auto-Regression Model and Kalman Filtering Algorithm 被引量:9
19
作者 ZHU Meifeng WU Qinglong WANG Yongqin 《Journal of Resources and Ecology》 CSCD 2019年第5期546-552,共7页
Consumption of clean energy has been increasing in China.Forecasting gas consumption is important to adjusting the energy consumption structure in the future.Based on historical data of gas consumption from 1980 to 20... Consumption of clean energy has been increasing in China.Forecasting gas consumption is important to adjusting the energy consumption structure in the future.Based on historical data of gas consumption from 1980 to 2017,this paper presents a weight method of the inverse deviation of fitted value,and a combined forecast based on a residual auto-regression model and Kalman filtering algorithm is used to forecast gas consumption.Our results show that:(1)The combination forecast is of higher precision:the relative errors of the residual auto-regressive model,the Kalman filtering algorithm and the combination model are within the range(–0.08,0.09),(–0.09,0.32)and(–0.03,0.11),respectively.(2)The combination forecast is of greater stability:the variance of relative error of the residual auto-regressive model,the Kalman filtering algorithm and the combination model are 0.002,0.007 and 0.001,respectively.(3)Provided that other conditions are invariant,the predicted value of gas consumption in 2018 is 241.81×10~9 m^3.Compared to other time-series forecasting methods,this combined model is less restrictive,performs well and the result is more credible. 展开更多
关键词 residual auto-regressive model Kalman filtering algorithm inverse fitting value deviation method combined forecast
原文传递
Applications of Fractional Lower Order Time-frequency Representation to Machine Bearing Fault Diagnosis 被引量:4
20
作者 Junbo Long Haibin Wang +1 位作者 Peng Li Hongshe Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期734-750,共17页
The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful ... The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful tool to extract helpful information of the machinery fault signal. Various fractional lower order(FLO) time-frequency distribution methods have been proposed based on fractional lower order statistics, which include fractional lower order short time Fourier transform(FLO-STFT), fractional lower order Wigner-Ville distributions(FLO-WVDs), fractional lower order Cohen class time-frequency distributions(FLO-CDs), fractional lower order adaptive kernel time-frequency distributions(FLO-AKDs) and adaptive fractional lower order time-frequency auto-regressive moving average(FLO-TFARMA) model time-frequency representation method.The methods and the exiting methods based on second order statistics in SaS distribution environments are compared, simulation results show that the new methods have better performances than the existing methods. The advantages and disadvantages of the improved time-frequency methods have been summarized.Last, the new methods are applied to analyze the outer race fault signals, the results illustrate their good performances. 展开更多
关键词 adaptive function Alpha stable distribution auto-regressive(AR) model non-stationary signal parameter estimation time frequency representation
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部