Noncorrosive reinforcement materials facilitate producing structural concrete with seawater and sea sand.This study investigated the properties of seawater and sea sand concrete(SSC),considering the curing age(3,7,14,...Noncorrosive reinforcement materials facilitate producing structural concrete with seawater and sea sand.This study investigated the properties of seawater and sea sand concrete(SSC),considering the curing age(3,7,14,21,28,60,and 150 d)and strength grade(C30,C40,and C60).The compressive behavior of SSC was obtained by compressive tests and digital image correction(DIC)technique.Scanning electron microscope(SEM)and X-ray powder diffraction(XRD)methods were applied to understand the microstructure and hydration products of cement in SSC.Results revealed a 30%decrease in compressive strength for C30 and C40 SSC from 60 to 150 d,and a less than 5%decrease for C60 from 28 to 150 d.DIC results revealed significant cracking and crushing from 80%to 100%of compressive strength.SEM images showed a more compact microstructure in higher strength SSC.XRD patterns identified Friedel’s salt phase due to the chlorides brought by seawater and sea sand.The findings in this study can provide more insights into the microstructure of SSC along with its short-and long-term compressive behavior.展开更多
GFRP bars reinforced in submerged or moist seawater and ocean concrete is subjected to highly alkaline conditions.While investigating the durability of GFRP bars in alkaline environment,the effect of surrounding tempe...GFRP bars reinforced in submerged or moist seawater and ocean concrete is subjected to highly alkaline conditions.While investigating the durability of GFRP bars in alkaline environment,the effect of surrounding temperature and conditioning duration on tensile strength retention(TSR)of GFRP bars is well investigated with laboratory aging of GFRP bars.However,the role of variable bar size and volume fraction of fiber have been poorly investigated.Additionally,various structural codes recommend the use of an additional environmental reduction factor to accurately reflect the long-term performance of GFRP bars in harsh environments.This study presents the development of Random Forest(RF)regression model to predict the TSR of laboratory conditioned bars in alkaline environment based on a reliable database comprising 772 tested specimens.RF model was optimized,trained,and validated using variety of statistical checks available in the literature.The developed RF model was used for the sensitivity and parametric analysis.Moreover,the formulated RF model was used for studying the long-term performance of GFRP rebars in the alkaline concrete environment.The sensitivity analysis exhibited that temperature and pH are among the most influential attributes in TSR,followed by volume fraction of fibers,duration of conditioning,and diameter of the bars,respectively.The bars with larger diameter and high-volume fraction of fibers are less susceptible to degradation in contrast to the small diameter bars and relatively low fiber’s volume fraction.Also,the long-term performance revealed that the existing recommendations by various codes regarding environmental reduction factors are conservative and therefore needs revision accordingly.展开更多
基金The authors would like to gratefully acknowledge the research grants from the China Postdoctoral Science Foundation(No.2020M681390)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Nos.20KJB560020 and 19KJB560010).
文摘Noncorrosive reinforcement materials facilitate producing structural concrete with seawater and sea sand.This study investigated the properties of seawater and sea sand concrete(SSC),considering the curing age(3,7,14,21,28,60,and 150 d)and strength grade(C30,C40,and C60).The compressive behavior of SSC was obtained by compressive tests and digital image correction(DIC)technique.Scanning electron microscope(SEM)and X-ray powder diffraction(XRD)methods were applied to understand the microstructure and hydration products of cement in SSC.Results revealed a 30%decrease in compressive strength for C30 and C40 SSC from 60 to 150 d,and a less than 5%decrease for C60 from 28 to 150 d.DIC results revealed significant cracking and crushing from 80%to 100%of compressive strength.SEM images showed a more compact microstructure in higher strength SSC.XRD patterns identified Friedel’s salt phase due to the chlorides brought by seawater and sea sand.The findings in this study can provide more insights into the microstructure of SSC along with its short-and long-term compressive behavior.
文摘GFRP bars reinforced in submerged or moist seawater and ocean concrete is subjected to highly alkaline conditions.While investigating the durability of GFRP bars in alkaline environment,the effect of surrounding temperature and conditioning duration on tensile strength retention(TSR)of GFRP bars is well investigated with laboratory aging of GFRP bars.However,the role of variable bar size and volume fraction of fiber have been poorly investigated.Additionally,various structural codes recommend the use of an additional environmental reduction factor to accurately reflect the long-term performance of GFRP bars in harsh environments.This study presents the development of Random Forest(RF)regression model to predict the TSR of laboratory conditioned bars in alkaline environment based on a reliable database comprising 772 tested specimens.RF model was optimized,trained,and validated using variety of statistical checks available in the literature.The developed RF model was used for the sensitivity and parametric analysis.Moreover,the formulated RF model was used for studying the long-term performance of GFRP rebars in the alkaline concrete environment.The sensitivity analysis exhibited that temperature and pH are among the most influential attributes in TSR,followed by volume fraction of fibers,duration of conditioning,and diameter of the bars,respectively.The bars with larger diameter and high-volume fraction of fibers are less susceptible to degradation in contrast to the small diameter bars and relatively low fiber’s volume fraction.Also,the long-term performance revealed that the existing recommendations by various codes regarding environmental reduction factors are conservative and therefore needs revision accordingly.