With the rapid developme nt of the economy, the continu ously in creasing populati on, and ongoing climate change, the shortage of freshwater resources has become an increasingly important global problem. Seawater des...With the rapid developme nt of the economy, the continu ously in creasing populati on, and ongoing climate change, the shortage of freshwater resources has become an increasingly important global problem. Seawater desalination tech no logy can effectively alleviate the pressure on freshwater supplies and has bee n in vestigated in many countries. However, the majority of existing projects focus on the research and development of desalination equipment and the use of new tech no logies and pay less atte ntion to the operation optimizati on of the desalinati on process. The micro energy n etwork (MEN) designed in this study is an efficient distributed energy supply system that can be used to simultaneously supply electricity, cooling, heating, and freshwater as photovoltaic power, wind power, combined heat and power (CHP), electric cooling and heating, and a seawater desalinati on device are in teg rated into the MEN. In this study, a model for operati on optimization of a MEN for seawater desalination was developed and the influences of the electric cooling and heating ratios and the operation optimization of the seawater desalination device were studied with the aim of minimizing the life cycle cost. Based on the results of this study, MENs can reduce the operation cost of desalination devices and improve the efficiency of renewable energy sources.展开更多
MSF seawater desalination has become an important technology to solve the scarce of fresh water resources in the world. But the high energy cost is the bottle-neck of extendibility and application. In this paper, the ...MSF seawater desalination has become an important technology to solve the scarce of fresh water resources in the world. But the high energy cost is the bottle-neck of extendibility and application. In this paper, the principle of MSF is analyzed and the single flash stage is divided into several elementary unit operations. The Aspen Plus is adopted to simulate MSF desalination process. The effect factor of MSF system, such as the feed seawater temperature, the top brine temperature(TBT) and the stage number, is investigated and the optimum operation condition is obtained.展开更多
基金supported by the State Grid Corporation of China project:“Study on Multi-source and Multi-load Coordination and Optimization Technology Considering Desalination of Sea Water”(SGTJDK00DWJS1800011)
文摘With the rapid developme nt of the economy, the continu ously in creasing populati on, and ongoing climate change, the shortage of freshwater resources has become an increasingly important global problem. Seawater desalination tech no logy can effectively alleviate the pressure on freshwater supplies and has bee n in vestigated in many countries. However, the majority of existing projects focus on the research and development of desalination equipment and the use of new tech no logies and pay less atte ntion to the operation optimizati on of the desalinati on process. The micro energy n etwork (MEN) designed in this study is an efficient distributed energy supply system that can be used to simultaneously supply electricity, cooling, heating, and freshwater as photovoltaic power, wind power, combined heat and power (CHP), electric cooling and heating, and a seawater desalinati on device are in teg rated into the MEN. In this study, a model for operati on optimization of a MEN for seawater desalination was developed and the influences of the electric cooling and heating ratios and the operation optimization of the seawater desalination device were studied with the aim of minimizing the life cycle cost. Based on the results of this study, MENs can reduce the operation cost of desalination devices and improve the efficiency of renewable energy sources.
文摘MSF seawater desalination has become an important technology to solve the scarce of fresh water resources in the world. But the high energy cost is the bottle-neck of extendibility and application. In this paper, the principle of MSF is analyzed and the single flash stage is divided into several elementary unit operations. The Aspen Plus is adopted to simulate MSF desalination process. The effect factor of MSF system, such as the feed seawater temperature, the top brine temperature(TBT) and the stage number, is investigated and the optimum operation condition is obtained.