Amidoxime-based adsorbents are widely studied as the main adsorbent in the recovery of uranium from seawater. However, the adsorption rate and loading capacity of such adsorbents should be further improved due to the ...Amidoxime-based adsorbents are widely studied as the main adsorbent in the recovery of uranium from seawater. However, the adsorption rate and loading capacity of such adsorbents should be further improved due to the economic viability consider- ation. In this paper, polyvinyl alcohol functionalized with amidoxime (PVA-g-AO) has been prepared as a new adsorbent for uranium (VI) adsorption from aqueous solution. The physicochemical properties of PVA-g-AO were investigated using infra- red spectroscopy (IR), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Results showed that the ligand monomers were successfully grafted onto the matrixes. The XRD and XPS analysis showed that uranium was adsorbed in metal ionic form rather than in crystal form. Uranyl (U (VI)) adsorption properties onto PVA-g-AO were evaluated. The adsorption of U (VI) by PVA-g-AO was fast, with an equilibrium time of less than 50 rnin. Additionally the maximum adsorption capacity reached 42.84 mg/g at pH 4.0.展开更多
基金supported by the Science and Technology Development Foundation of China Academy of Engineering Physics(2011A0301003)
文摘Amidoxime-based adsorbents are widely studied as the main adsorbent in the recovery of uranium from seawater. However, the adsorption rate and loading capacity of such adsorbents should be further improved due to the economic viability consider- ation. In this paper, polyvinyl alcohol functionalized with amidoxime (PVA-g-AO) has been prepared as a new adsorbent for uranium (VI) adsorption from aqueous solution. The physicochemical properties of PVA-g-AO were investigated using infra- red spectroscopy (IR), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Results showed that the ligand monomers were successfully grafted onto the matrixes. The XRD and XPS analysis showed that uranium was adsorbed in metal ionic form rather than in crystal form. Uranyl (U (VI)) adsorption properties onto PVA-g-AO were evaluated. The adsorption of U (VI) by PVA-g-AO was fast, with an equilibrium time of less than 50 rnin. Additionally the maximum adsorption capacity reached 42.84 mg/g at pH 4.0.