Combining fiber reinforced polymer(FRP)with seawater sea-sand concrete(SSC)can solve the shortage of river sand that will be used for marine engineering construction.The bond performance of BFRP bars and SSC specimens...Combining fiber reinforced polymer(FRP)with seawater sea-sand concrete(SSC)can solve the shortage of river sand that will be used for marine engineering construction.The bond performance of BFRP bars and SSC specimens is researched by pull-out test in this paper.The effects of the parameters,such as bar type,bar diameter,concrete type and stirrup restraint,are considered.It is beneficial to the bonding performance by the reduction of bar diameter.The utilization of seawater sea-sand has a low influence on the bond properties of concrete.The bond strength of BFRP is slightly lower than the steel rebar,but the difference is relatively small.The failure mode of the specimen can be changed and the interfacial bond stress can be improved by stirrups restraint.The bond-slip curves of BFRP ribbed rebar include micro slip stage,slip stage,descent stage and residual stage.The bond stress shows the cycle attenuation pattern of sine in the residual stage.In addition,the bond-slip model of BFRP and SSC is obtained according to the experimental results and related literature,while the predicted curve is also consistent well with the measured curve.展开更多
Ultra-high-performance seawater sea-sand concrete(UHPSSC)presents a prospective solution to address the natural resource shortage in marine infrastructure construction.To eliminate the corrosion risk of steel fibers a...Ultra-high-performance seawater sea-sand concrete(UHPSSC)presents a prospective solution to address the natural resource shortage in marine infrastructure construction.To eliminate the corrosion risk of steel fibers and broaden the applicability of UHPSSC,this study investigates the mechanical properties and free chloride ion content as well as microstructures of UHPSSC reinforced with superfine stainless wires(SSWs)under natural curing.The results indicate that 1.5%SSWs can remarkably improve the flexural strength and toughness of UHPSSC by 127%and 1724%,respectively,and mitigate the long-term strength degradation of UHPSSC.The strong interfacial bond between SSW and UHPSSC improves the compactness of UHPSSC,thus reducing the growth space for Ca(OH)_(2) crystals and swelling hydration products generated by sulfate and magnesium ions.This can be supported by the observed reduction in the Ca/Si ratio of C–S–H gels,CH crystal orientation index,and porosity.Moreover,through mechanisms such as pull-out,rupture,overlapping network,and internal anchor interface,SSWs effectively prevent microcrack growth and propagation,transforming single long-connected microcracks into multiple-emission microcracks centered on SSW.Additionally,the free chloride ion content of the composites at 28 and 180 d meets the ACI 318-19 standard requirements for concrete exposed to seawater.This compliance is attributed to the chloride immobilization facilitated by Friedel’s salt and C–S–H gels within the interfaces around SSWs and sea-sand.Consequently,SSWs-reinforced UHPSSC exhibits considerable potential for applications in sustainable marine infrastructures,demanding long-term mechanical properties and high durability.展开更多
基金Project(BE2019642)supported by the Jiangsu Provincial Key Research and Development Program,China。
文摘Combining fiber reinforced polymer(FRP)with seawater sea-sand concrete(SSC)can solve the shortage of river sand that will be used for marine engineering construction.The bond performance of BFRP bars and SSC specimens is researched by pull-out test in this paper.The effects of the parameters,such as bar type,bar diameter,concrete type and stirrup restraint,are considered.It is beneficial to the bonding performance by the reduction of bar diameter.The utilization of seawater sea-sand has a low influence on the bond properties of concrete.The bond strength of BFRP is slightly lower than the steel rebar,but the difference is relatively small.The failure mode of the specimen can be changed and the interfacial bond stress can be improved by stirrups restraint.The bond-slip curves of BFRP ribbed rebar include micro slip stage,slip stage,descent stage and residual stage.The bond stress shows the cycle attenuation pattern of sine in the residual stage.In addition,the bond-slip model of BFRP and SSC is obtained according to the experimental results and related literature,while the predicted curve is also consistent well with the measured curve.
基金supported by the National Natural Science Foundation of China(Grant Nos.52178188 and 52308236)the Natural Science Joint Foundation of Liaoning Province(Grant No.2023-BSBA-077)+1 种基金the Provincial-Municipal Joint Fund(Youth Fund)of Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515110437)the Major Science and Technology Research Project of the China Building Materials Federation(Grant No.2023JBGS10-02).
文摘Ultra-high-performance seawater sea-sand concrete(UHPSSC)presents a prospective solution to address the natural resource shortage in marine infrastructure construction.To eliminate the corrosion risk of steel fibers and broaden the applicability of UHPSSC,this study investigates the mechanical properties and free chloride ion content as well as microstructures of UHPSSC reinforced with superfine stainless wires(SSWs)under natural curing.The results indicate that 1.5%SSWs can remarkably improve the flexural strength and toughness of UHPSSC by 127%and 1724%,respectively,and mitigate the long-term strength degradation of UHPSSC.The strong interfacial bond between SSW and UHPSSC improves the compactness of UHPSSC,thus reducing the growth space for Ca(OH)_(2) crystals and swelling hydration products generated by sulfate and magnesium ions.This can be supported by the observed reduction in the Ca/Si ratio of C–S–H gels,CH crystal orientation index,and porosity.Moreover,through mechanisms such as pull-out,rupture,overlapping network,and internal anchor interface,SSWs effectively prevent microcrack growth and propagation,transforming single long-connected microcracks into multiple-emission microcracks centered on SSW.Additionally,the free chloride ion content of the composites at 28 and 180 d meets the ACI 318-19 standard requirements for concrete exposed to seawater.This compliance is attributed to the chloride immobilization facilitated by Friedel’s salt and C–S–H gels within the interfaces around SSWs and sea-sand.Consequently,SSWs-reinforced UHPSSC exhibits considerable potential for applications in sustainable marine infrastructures,demanding long-term mechanical properties and high durability.