The electrically charged flocculation agent Kiyomaru was made on the basis of activating surface sand, clay, volcanic ash and then combined with strong electrical charge on the surface. Thus, it is the flocculant with...The electrically charged flocculation agent Kiyomaru was made on the basis of activating surface sand, clay, volcanic ash and then combined with strong electrical charge on the surface. Thus, it is the flocculant with natural and inorganic origin including 24.7% Na, 11.5% Al, 19.6% Si, 22.5% S, 1.8% K, 19.0% Ca and 0.9% Fe. The experimental results showed that the Kiyomaru is a flocculation agent with ability to treat the turbidity and suspended solid in the catfish farming waters with very high sedimentation rate and removal efficiency. The efficiency of turbidity removal is from 98.7% to 99.1%, while that for TSS removal is from 93.5% to 95.2% using 0.2 mg/L of the flocculation agent. Beside those, the agent can remove the organic matters (BOD, COD) from 21.4% to 26.7%, Total N from 32.4% to 33.9% and Total P from 85.4% to 89.3%. When the concentration of this flocculate agent is 0.2 g/L, turbidity treatment efficiency can range from 98.7% to 99.1%; TSS treatment efficiency can range from 93.5% to 95.2%. Besides, this flocculation agent is also capable of reducing 21.4%-26.7% of the organic matter, 32.4% to 33.9% of Total N and 85.4% to 89.3% of Total P.展开更多
A multilateral effort into managing nonpoint source pollution from agriculture has gotten much attention for many years. Particularly during the heavy rain season, run-off of turbid water from sloped farmlands, fallow...A multilateral effort into managing nonpoint source pollution from agriculture has gotten much attention for many years. Particularly during the heavy rain season, run-off of turbid water from sloped farmlands, fallow ground and/or unmanaged uplands is deteriorated. Flocculant polymer, commonly used in wastewater treatment facilities, but now exploited to improve control of sediment turbidity by promoting flocculation of particles in construction site. This study used the flocculant polymer to control the discharge of agricultural nonpoint source pollution and focused on the understanding of how soil-water and polymer properties affect flocculation performance. Therefore, a series of flocculation experiments under different conditions was evaluated for better polymer clarification efficiency. Various factors such as flocculant dose, end-over-end inversion of a cylinder, and soil-water properties (pH, NaCl, organic matter) were studied. The effective flocculant dose that fulfilled fast settling rate was 10mg·L-1. Additional findings included that 1) increasing pH decreased the settling rate of soil particle;2) a positive relationship between the percentage of turbidity reduction and a level of salinity in Kaolin suspension was observed, and 3) organic matter in soil solution inhibited PAM adsorption onto soil particles, which caused the reduction of flocculation performance. The findings of this study revealed that flocculant polymer possess good results as a turbidity reducetion measure and couldfurther provide valuable information to make better decision on establishment of Best Management Practice for handling agricultural nonpoint source pollution.展开更多
A bioflocculant producing potential bacteria was isolated from the circulating seawater of bio-filter using streak plate methods.The bacteria was identified through biochemical characteristics,partial 16S ribosomal ri...A bioflocculant producing potential bacteria was isolated from the circulating seawater of bio-filter using streak plate methods.The bacteria was identified through biochemical characteristics,partial 16S ribosomal ribonucleic acids(rRNA),nucleo-tide sequencing,and BLAST analysis of the gene sequence that showed the bacteria have 99%similarity to Pseudoalteromonas sp.and deposited in GenBank as Pseudoalteromonas sp.NUM8 with accession number JX435820.Influences of time course assay,carbon sources,nitrogen sources,inoculum size,as well as initial pH on the bacteria producing extracellular bioflocculant activity were investigated.The results showed that the strain optimal production period of microbial bioflocculant was at 72 h(flocculating activity of 94.5%),then dropped slowly.The bacteria optimally produced the bioflocculant when 1.0%sucrose and 0.5%sodium nitrate were used as sole sources of carbon and nitrogen with flocculating activities of 92.8%and 93.8%respectively.Also,the bacteria produced the bioflocculant optimally when initial pH of the medium was 5.0(flocculating activity 93.2%),and when Ca^(2+)was used as cation(flocculating activity 93.4%).The culture condition of inoculum size of 3%(v/v)was optimal flocculant pro-duction(flocculating activity 94.4%).Composition analyses indicated the bioflocculant to be principally a glycoprotein made up of about 34.3%protein and 63.4%total carbohydrate.展开更多
Turbidity is a characteristic related to the concentration of suspended solids particles in water and has been adopted as an easy and reasonably accurate measure of overall water quality. The most widely applied water...Turbidity is a characteristic related to the concentration of suspended solids particles in water and has been adopted as an easy and reasonably accurate measure of overall water quality. The most widely applied water treatment processes, a combination of some or all of coagulation, flocculation, sedimentation and filtration to reduce or eliminate turbidity and improve water quality. In this research, proposed approach was adopted on the basis of applying two sequent treatments that used coagulation, flocculation and sedimentation processes under certain operating conditions of mixing speed, mixing time and settling time for each treatment. The environmentally friendly natural coagulants of date seeds (DS) or pollen sheath (PS) from local Iraqi palm was used in the first treatment and alum was used in the second treatment at their predetermined optimum doses to treat low ( NTU), medium ( NTU) and high ( NTU) ben- tonite synthetic turbid water. Experimental results clearly show that the proposed approach was superior in perform- ance in terms of residual turbidity compared with conventional approach using both of (DS) and (PS) natural coagulants in which it achieved a significant reduction in turbidity to less of 5 NTU that meeting WHO drinking water guidelines for all tested synthetic turbid water. Moreover, in some cases, it produced excellent water quality having residual tur- bidity less of 0.1 NTU. In addition to decrease the settling time to 30 minutes and minimize risks of alum dose required to 60%. These viable advantages are significant to current practices in advanced water treatment technologies such as reverse osmosis in cost, energy, effectiveness, safety and maintenance. So, it is recommended to consider proposed approach in this research work to be a novel pretreatment approach in advanced water treatment.展开更多
This study focused on developing an efficient and cost effective processing technique for Moringa oleifera seeds to produce natural coagulant for use in drinking water treatment. The produced natural coagulant can be ...This study focused on developing an efficient and cost effective processing technique for Moringa oleifera seeds to produce natural coagulant for use in drinking water treatment. The produced natural coagulant can be used as an alternative to aluminum sulphate and other coagulants and used worldwide for water treatment. This study investigates processing Moringa oleifera seeds to concentrate the bio-active constituents which have coagulation activity. Moringa oleifera seeds were processed for oil extraction using electro thermal soxhlet. Isolation and purification of bio-active constituents using chromatography technique were used to determine the molecular weight of the bio-active constituents. The molecular weight of bio-active constitu-ents found to be in a low molecular weight range of between 1000 – 6500 Dalton. The proposed method to isolate and purify the bio-active constituents was the cross flow filtration method, which produced the natu-ral coagulant with very simple technique (oil extraction;salt extraction;and microfiltration through 0.45 μm). The turbidity removal was up to 96.23 % using 0.4 mg/L of processed Moringa oleifera seeds to treat low initial turbidity river water between 34-36 Nephelometric Turbidity Units (NTU) without any additives. The microfiltration method is considered to be a practical method which needs no chemicals to be added com-pared to other researchers proposed methods. The natural coagulant produced was used with low dosages to get high turbidity removal which considered to be a breakthrough in this study and recommended to be scaled up for industry level. The product is commercially valuable at the same time it is minimizing the cost of water treatment.展开更多
Coagulation and flocculation are the most important processes in water treatment plants. Nowadays, in Iran, coagulants which have the most usage in water treatment are Aluminum Sulphate (Alum) and Ferric Chlo-ride. Us...Coagulation and flocculation are the most important processes in water treatment plants. Nowadays, in Iran, coagulants which have the most usage in water treatment are Aluminum Sulphate (Alum) and Ferric Chlo-ride. Using synthetic coagulants are not economical and useful for health in developing countries. The aim of this research is to survey and compare the Ferric Chloride coagulant function and this coagulant accompany with Plantago ovata coagulant aid under variable pH for eliminating of water turbidity. This study was performed in lab scale for water containing artificial turbidity of clay. The experiments were done in three turbidity ranges 100, 50, 20 NTU and two ranges of pH 7 and 8. The amount of Ferric Chloride in all experiments were 10 ppm and P.ovata extarct in optimum concentration for turbidity of 100, 50, 20 NTU was 0.2 ppm, 0.1 ppm and 0.04 ppm respectively. The optimum pH was 7. Using P.ovata co-agulant aid in turbidity 100, 50, 20 NTU can eliminate 94.1, 94.5, 88.15 percent of above turbidities, while using Ferric Chloride coagulant alone in optimum pH can eliminate 90.3, 85.16, 80.2 percent of the turbid-ities mentioned above. Results show that P.ovata extract is less efficient in high turbidities when used as a coagulant aid. Plantago ovata, as a coagulant aid, showed positive influence on turbidity removal from water. In addition, optimized pH showed important role in reducing turbidity.展开更多
Combined flocculants with low ecological risk are urgently required in water supply and wastewater treatment in China. A novel flocculant was thus developed under the condition of low ecological risk(noted as CAS). Th...Combined flocculants with low ecological risk are urgently required in water supply and wastewater treatment in China. A novel flocculant was thus developed under the condition of low ecological risk(noted as CAS). The experiments to examine wastewater treatment performance of the new product showed that there was favourable performance in the flocculation process in contrast to commercial flocculants in treating kaolin suspensions, municipal effluent and domestic wastewater. Flocculation performance included the turbidity removal rate, sediment character and a decrease in COD(chemical oxygen demand). The sediment time of flocculation is short and the removal rate of turbidity treated by CAS is high compared with PAC(polyaluminum chloride), PAM(polyacrylamide) and the combined addition of PAC and PAM. The optimal concentration required to affect flocculation processes is dependent on kaolin concentration and the character of the wastewater within the range examined. It also showed that CAS is effective to treat wastewater with high turbidity.展开更多
A study on flocculation control based on fractal theory was carried out. Optimization test of chemical coagulant dosage confirmed that the fractal dimension could reflect the flocculation degree and settling character...A study on flocculation control based on fractal theory was carried out. Optimization test of chemical coagulant dosage confirmed that the fractal dimension could reflect the flocculation degree and settling characteristics of aggregates and the good correlation with the turbidity of settled effluent. So that the fractal dimension can be used as the major parameter for floc-culation system control and achieve self-acting adjustment of chemical coagulant dosage. The fractal dimension flocculation control system was used for further study carried out on the effects of various flocculation parameters, among which are the dependency relationship among aggregates fractal dimension, chemical coagulant dosage, and turbidity of settled effluent under the conditions of variable water quality and quantity. And basic experimental data were obtained for establishing the chemical coagulant dosage control model mainly based on aggregates fractal dimension.展开更多
The flocculation of kaolinite colloidal particles was carried out at pH = 6 in suspension of initial turbidity varying between 24 NTU and 102 NTU by a casein extracted from Cocos nucifera cream. During Jar-test essays...The flocculation of kaolinite colloidal particles was carried out at pH = 6 in suspension of initial turbidity varying between 24 NTU and 102 NTU by a casein extracted from Cocos nucifera cream. During Jar-test essays, 90% to 99% of colloids were eliminated in the sediments. The optimal doses of casein used depend on the initial colloids concentrations of the suspension and were found to be 60 mg/L and 100 mg/L respectively for suspensions having turbidity of 24 NTU and 102 NTU. The corresponding residual turbidity are respectively 2.80 NTU and 10.22 NTU for clarified water. The structural analysis of the freeze-dried sediments by FTIR shows sharp adsorption bands at 1558 cm–1 and 1653 cm–1, indicating the presence of casein in the sediment. The flocculation process between the particles of kaolinite and the coconut casein is adsorption and bridging.展开更多
文摘The electrically charged flocculation agent Kiyomaru was made on the basis of activating surface sand, clay, volcanic ash and then combined with strong electrical charge on the surface. Thus, it is the flocculant with natural and inorganic origin including 24.7% Na, 11.5% Al, 19.6% Si, 22.5% S, 1.8% K, 19.0% Ca and 0.9% Fe. The experimental results showed that the Kiyomaru is a flocculation agent with ability to treat the turbidity and suspended solid in the catfish farming waters with very high sedimentation rate and removal efficiency. The efficiency of turbidity removal is from 98.7% to 99.1%, while that for TSS removal is from 93.5% to 95.2% using 0.2 mg/L of the flocculation agent. Beside those, the agent can remove the organic matters (BOD, COD) from 21.4% to 26.7%, Total N from 32.4% to 33.9% and Total P from 85.4% to 89.3%. When the concentration of this flocculate agent is 0.2 g/L, turbidity treatment efficiency can range from 98.7% to 99.1%; TSS treatment efficiency can range from 93.5% to 95.2%. Besides, this flocculation agent is also capable of reducing 21.4%-26.7% of the organic matter, 32.4% to 33.9% of Total N and 85.4% to 89.3% of Total P.
文摘A multilateral effort into managing nonpoint source pollution from agriculture has gotten much attention for many years. Particularly during the heavy rain season, run-off of turbid water from sloped farmlands, fallow ground and/or unmanaged uplands is deteriorated. Flocculant polymer, commonly used in wastewater treatment facilities, but now exploited to improve control of sediment turbidity by promoting flocculation of particles in construction site. This study used the flocculant polymer to control the discharge of agricultural nonpoint source pollution and focused on the understanding of how soil-water and polymer properties affect flocculation performance. Therefore, a series of flocculation experiments under different conditions was evaluated for better polymer clarification efficiency. Various factors such as flocculant dose, end-over-end inversion of a cylinder, and soil-water properties (pH, NaCl, organic matter) were studied. The effective flocculant dose that fulfilled fast settling rate was 10mg·L-1. Additional findings included that 1) increasing pH decreased the settling rate of soil particle;2) a positive relationship between the percentage of turbidity reduction and a level of salinity in Kaolin suspension was observed, and 3) organic matter in soil solution inhibited PAM adsorption onto soil particles, which caused the reduction of flocculation performance. The findings of this study revealed that flocculant polymer possess good results as a turbidity reducetion measure and couldfurther provide valuable information to make better decision on establishment of Best Management Practice for handling agricultural nonpoint source pollution.
基金This work was supported by the Public Welfare Pro-jects in Zhejiang Province(No.LGN21C200001)the Public Welfare Projects in Zhoushan city(Nos.2021C 41005 and 2021C41007)the Natural Science Foun-dation of Marine Fishery Institute of Zhejiang Province(No.2020KF 010).
文摘A bioflocculant producing potential bacteria was isolated from the circulating seawater of bio-filter using streak plate methods.The bacteria was identified through biochemical characteristics,partial 16S ribosomal ribonucleic acids(rRNA),nucleo-tide sequencing,and BLAST analysis of the gene sequence that showed the bacteria have 99%similarity to Pseudoalteromonas sp.and deposited in GenBank as Pseudoalteromonas sp.NUM8 with accession number JX435820.Influences of time course assay,carbon sources,nitrogen sources,inoculum size,as well as initial pH on the bacteria producing extracellular bioflocculant activity were investigated.The results showed that the strain optimal production period of microbial bioflocculant was at 72 h(flocculating activity of 94.5%),then dropped slowly.The bacteria optimally produced the bioflocculant when 1.0%sucrose and 0.5%sodium nitrate were used as sole sources of carbon and nitrogen with flocculating activities of 92.8%and 93.8%respectively.Also,the bacteria produced the bioflocculant optimally when initial pH of the medium was 5.0(flocculating activity 93.2%),and when Ca^(2+)was used as cation(flocculating activity 93.4%).The culture condition of inoculum size of 3%(v/v)was optimal flocculant pro-duction(flocculating activity 94.4%).Composition analyses indicated the bioflocculant to be principally a glycoprotein made up of about 34.3%protein and 63.4%total carbohydrate.
文摘Turbidity is a characteristic related to the concentration of suspended solids particles in water and has been adopted as an easy and reasonably accurate measure of overall water quality. The most widely applied water treatment processes, a combination of some or all of coagulation, flocculation, sedimentation and filtration to reduce or eliminate turbidity and improve water quality. In this research, proposed approach was adopted on the basis of applying two sequent treatments that used coagulation, flocculation and sedimentation processes under certain operating conditions of mixing speed, mixing time and settling time for each treatment. The environmentally friendly natural coagulants of date seeds (DS) or pollen sheath (PS) from local Iraqi palm was used in the first treatment and alum was used in the second treatment at their predetermined optimum doses to treat low ( NTU), medium ( NTU) and high ( NTU) ben- tonite synthetic turbid water. Experimental results clearly show that the proposed approach was superior in perform- ance in terms of residual turbidity compared with conventional approach using both of (DS) and (PS) natural coagulants in which it achieved a significant reduction in turbidity to less of 5 NTU that meeting WHO drinking water guidelines for all tested synthetic turbid water. Moreover, in some cases, it produced excellent water quality having residual tur- bidity less of 0.1 NTU. In addition to decrease the settling time to 30 minutes and minimize risks of alum dose required to 60%. These viable advantages are significant to current practices in advanced water treatment technologies such as reverse osmosis in cost, energy, effectiveness, safety and maintenance. So, it is recommended to consider proposed approach in this research work to be a novel pretreatment approach in advanced water treatment.
文摘This study focused on developing an efficient and cost effective processing technique for Moringa oleifera seeds to produce natural coagulant for use in drinking water treatment. The produced natural coagulant can be used as an alternative to aluminum sulphate and other coagulants and used worldwide for water treatment. This study investigates processing Moringa oleifera seeds to concentrate the bio-active constituents which have coagulation activity. Moringa oleifera seeds were processed for oil extraction using electro thermal soxhlet. Isolation and purification of bio-active constituents using chromatography technique were used to determine the molecular weight of the bio-active constituents. The molecular weight of bio-active constitu-ents found to be in a low molecular weight range of between 1000 – 6500 Dalton. The proposed method to isolate and purify the bio-active constituents was the cross flow filtration method, which produced the natu-ral coagulant with very simple technique (oil extraction;salt extraction;and microfiltration through 0.45 μm). The turbidity removal was up to 96.23 % using 0.4 mg/L of processed Moringa oleifera seeds to treat low initial turbidity river water between 34-36 Nephelometric Turbidity Units (NTU) without any additives. The microfiltration method is considered to be a practical method which needs no chemicals to be added com-pared to other researchers proposed methods. The natural coagulant produced was used with low dosages to get high turbidity removal which considered to be a breakthrough in this study and recommended to be scaled up for industry level. The product is commercially valuable at the same time it is minimizing the cost of water treatment.
文摘Coagulation and flocculation are the most important processes in water treatment plants. Nowadays, in Iran, coagulants which have the most usage in water treatment are Aluminum Sulphate (Alum) and Ferric Chlo-ride. Using synthetic coagulants are not economical and useful for health in developing countries. The aim of this research is to survey and compare the Ferric Chloride coagulant function and this coagulant accompany with Plantago ovata coagulant aid under variable pH for eliminating of water turbidity. This study was performed in lab scale for water containing artificial turbidity of clay. The experiments were done in three turbidity ranges 100, 50, 20 NTU and two ranges of pH 7 and 8. The amount of Ferric Chloride in all experiments were 10 ppm and P.ovata extarct in optimum concentration for turbidity of 100, 50, 20 NTU was 0.2 ppm, 0.1 ppm and 0.04 ppm respectively. The optimum pH was 7. Using P.ovata co-agulant aid in turbidity 100, 50, 20 NTU can eliminate 94.1, 94.5, 88.15 percent of above turbidities, while using Ferric Chloride coagulant alone in optimum pH can eliminate 90.3, 85.16, 80.2 percent of the turbid-ities mentioned above. Results show that P.ovata extract is less efficient in high turbidities when used as a coagulant aid. Plantago ovata, as a coagulant aid, showed positive influence on turbidity removal from water. In addition, optimized pH showed important role in reducing turbidity.
文摘Combined flocculants with low ecological risk are urgently required in water supply and wastewater treatment in China. A novel flocculant was thus developed under the condition of low ecological risk(noted as CAS). The experiments to examine wastewater treatment performance of the new product showed that there was favourable performance in the flocculation process in contrast to commercial flocculants in treating kaolin suspensions, municipal effluent and domestic wastewater. Flocculation performance included the turbidity removal rate, sediment character and a decrease in COD(chemical oxygen demand). The sediment time of flocculation is short and the removal rate of turbidity treated by CAS is high compared with PAC(polyaluminum chloride), PAM(polyacrylamide) and the combined addition of PAC and PAM. The optimal concentration required to affect flocculation processes is dependent on kaolin concentration and the character of the wastewater within the range examined. It also showed that CAS is effective to treat wastewater with high turbidity.
基金Project (No. 2002AA601120) supported by the Hi-Tech Researchand Development Program (863) of China
文摘A study on flocculation control based on fractal theory was carried out. Optimization test of chemical coagulant dosage confirmed that the fractal dimension could reflect the flocculation degree and settling characteristics of aggregates and the good correlation with the turbidity of settled effluent. So that the fractal dimension can be used as the major parameter for floc-culation system control and achieve self-acting adjustment of chemical coagulant dosage. The fractal dimension flocculation control system was used for further study carried out on the effects of various flocculation parameters, among which are the dependency relationship among aggregates fractal dimension, chemical coagulant dosage, and turbidity of settled effluent under the conditions of variable water quality and quantity. And basic experimental data were obtained for establishing the chemical coagulant dosage control model mainly based on aggregates fractal dimension.
文摘The flocculation of kaolinite colloidal particles was carried out at pH = 6 in suspension of initial turbidity varying between 24 NTU and 102 NTU by a casein extracted from Cocos nucifera cream. During Jar-test essays, 90% to 99% of colloids were eliminated in the sediments. The optimal doses of casein used depend on the initial colloids concentrations of the suspension and were found to be 60 mg/L and 100 mg/L respectively for suspensions having turbidity of 24 NTU and 102 NTU. The corresponding residual turbidity are respectively 2.80 NTU and 10.22 NTU for clarified water. The structural analysis of the freeze-dried sediments by FTIR shows sharp adsorption bands at 1558 cm–1 and 1653 cm–1, indicating the presence of casein in the sediment. The flocculation process between the particles of kaolinite and the coconut casein is adsorption and bridging.