移相全桥ZVS变换器副边整流二极管电压应力较高,需要设计缓冲电路来保证系统性能。然而,加入RC缓冲电路的变换器在某种工作模式下近似为LCL三阶谐振系统,导致接近开关频率的谐振甚至在整流二极管两侧产生更高的电压应力。通过建立移相全...移相全桥ZVS变换器副边整流二极管电压应力较高,需要设计缓冲电路来保证系统性能。然而,加入RC缓冲电路的变换器在某种工作模式下近似为LCL三阶谐振系统,导致接近开关频率的谐振甚至在整流二极管两侧产生更高的电压应力。通过建立移相全桥ZVS变换器在能量传输模式期间的等效电路模型,揭示RC缓冲电路对系统稳定性产生影响机理及电路参数对振荡的影响规律,通过分析选取合理的RC缓冲电路参数,不仅有效降低整流二极管电压应力,同时抑制由缓冲电路带来的振荡问题,进而提高系统的效率。设计了一个3.2 k W(10 A,320 V)的实验样机,验证了理论分析的正确性。展开更多
针对退役锂电池健康状态估计效率较低的现状,提出一种快速、有效的估计方法。首先采用3阶RC等效电路模型描述电池特性得出状态方程,确保电池模型精确性,同时引入电池荷电状态SOC(State of charge)和欧姆内阻(R 0)作为状态方程参数。其...针对退役锂电池健康状态估计效率较低的现状,提出一种快速、有效的估计方法。首先采用3阶RC等效电路模型描述电池特性得出状态方程,确保电池模型精确性,同时引入电池荷电状态SOC(State of charge)和欧姆内阻(R 0)作为状态方程参数。其次利用区域概念,计算出特定的区域容量与区域电压,减少电池参数估计所需要的数据、时间。然后通过扩展卡尔曼滤波(Extended kalman filtering)算法估计电池参数SOC和R 0,进而对电池健康状态(State of health,SOH)进行估计。最后,利用电池测试设备(Arbin-BT2000)对18650电池进行充放电实验,验证该方法的可行性。实验结果证明SOH估计所需参数明显减少,使得电池数据测量所需时间明显缩短,并且估计误差不超过4%,误差较小,说明所提出方法能快速、有效地估算出电池SOH。展开更多
为了准确估算锂电池的剩余荷电状态(State of Charge,SOC),在2阶RC等效电路模型基础上,采用带遗忘因子递推最小二乘法(Forgetting Factor Recursive Least Square,FFRLS)对电池模型进行在线参数辨识,提高模型精度,联合扩展卡尔曼滤波算...为了准确估算锂电池的剩余荷电状态(State of Charge,SOC),在2阶RC等效电路模型基础上,采用带遗忘因子递推最小二乘法(Forgetting Factor Recursive Least Square,FFRLS)对电池模型进行在线参数辨识,提高模型精度,联合扩展卡尔曼滤波算法(Extended Kalman Filter,EKF)对锂电池的SOC进行估算。在MATLAB环境下进行模拟仿真,仿真结果表明:FFRLS算法辨识后电池模型得仿真电压与实际电压得最大误差为0.029,平均误差约为0.0006,联合EKF对SOC的估算误差在绝对值3%以内,其中最大误差绝对值为2.6%。展开更多
文摘移相全桥ZVS变换器副边整流二极管电压应力较高,需要设计缓冲电路来保证系统性能。然而,加入RC缓冲电路的变换器在某种工作模式下近似为LCL三阶谐振系统,导致接近开关频率的谐振甚至在整流二极管两侧产生更高的电压应力。通过建立移相全桥ZVS变换器在能量传输模式期间的等效电路模型,揭示RC缓冲电路对系统稳定性产生影响机理及电路参数对振荡的影响规律,通过分析选取合理的RC缓冲电路参数,不仅有效降低整流二极管电压应力,同时抑制由缓冲电路带来的振荡问题,进而提高系统的效率。设计了一个3.2 k W(10 A,320 V)的实验样机,验证了理论分析的正确性。
文摘针对退役锂电池健康状态估计效率较低的现状,提出一种快速、有效的估计方法。首先采用3阶RC等效电路模型描述电池特性得出状态方程,确保电池模型精确性,同时引入电池荷电状态SOC(State of charge)和欧姆内阻(R 0)作为状态方程参数。其次利用区域概念,计算出特定的区域容量与区域电压,减少电池参数估计所需要的数据、时间。然后通过扩展卡尔曼滤波(Extended kalman filtering)算法估计电池参数SOC和R 0,进而对电池健康状态(State of health,SOH)进行估计。最后,利用电池测试设备(Arbin-BT2000)对18650电池进行充放电实验,验证该方法的可行性。实验结果证明SOH估计所需参数明显减少,使得电池数据测量所需时间明显缩短,并且估计误差不超过4%,误差较小,说明所提出方法能快速、有效地估算出电池SOH。
文摘为了准确估算锂电池的剩余荷电状态(State of Charge,SOC),在2阶RC等效电路模型基础上,采用带遗忘因子递推最小二乘法(Forgetting Factor Recursive Least Square,FFRLS)对电池模型进行在线参数辨识,提高模型精度,联合扩展卡尔曼滤波算法(Extended Kalman Filter,EKF)对锂电池的SOC进行估算。在MATLAB环境下进行模拟仿真,仿真结果表明:FFRLS算法辨识后电池模型得仿真电压与实际电压得最大误差为0.029,平均误差约为0.0006,联合EKF对SOC的估算误差在绝对值3%以内,其中最大误差绝对值为2.6%。