Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is d...Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is diagnosed by the electric field induced second harmonic(E-FISH)method,and the time-resolved electric field under different conditions is investigated.When positive pulse voltage is applied,the electric field has a peak of about 25 kV cm-1at the rising edge of the voltage pulse.A dark channel is left behind the plasma bullet and the electric field in the dark channel is about 5 kV cm-1.On the other hand,when negative pulse voltage is applied,the electric field has a peak of-16 kV cm-1when the negative voltage is increased to-8 kV.A relatively bright channel is left behind the plasma head and the electric field in this relatively bright channel is about-6 kV cm-1.When the pulse rising time increases from 60 to 200 ns,the peak electric field at both the rising edge and the falling edge of the voltage decreases significantly.When 0.5%of oxygen is added to the main working gas helium,the peak electric field at the rising edge is only about 15 kV cm-1.On the other hand,when 0.5%nitrogen is added,the peak electric field increases especially at the falling edge of the voltage pulse,where it increases reversely from-12 to-16 kV cm-1(the minus sign only represents the direction of electric field).展开更多
The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of aco...The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface. In general, the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur. However, the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied. Through boundary condition and initial condition of excitation, the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined. Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns.展开更多
The influences of phase and group velocity matching on cumulative second harmonic generation of Lamb waves are investigated in numerical perspective. Finite element simulations of nonlinear Lamb wave propagation are p...The influences of phase and group velocity matching on cumulative second harmonic generation of Lamb waves are investigated in numerical perspective. Finite element simulations of nonlinear Lamb wave propagation are performed for Lamb wave mode pairs with exact and approximate phase velocity matching, with and without group velocity matching, respectively. The evolution of time-domain second harmonic Lamb waves is analyzed with the propagation distance. The amplitudes of primary and second harmonic waves are calculated to characterize the acoustic nonlinearity. The results verify that phase velocity matching is necessary for generation of the cumulative second harmonic Lamb wave in numerical perspective, while group velocity matching is demonstrated to not be a necessary condition.展开更多
Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interactio...Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interaction mechanism about propagating waves, featured by wave competition and wave cooperation, is presented and provides a new insight into the beam-wave interaction. The two different features revealed in the two different operation regions of low-order axial modes (LOAMs) and high-order axial modes (HOAMs) respectively determine the characteristic of the overall performance of the device essentially. The device performance is obtained by the simulation based on the time-domain nonlinear theory and shows that using a 12-kV/150-mA electron beam and TE 3,4 mode, the second harmonic gyrotron can generate terahertz radiations with frequency-tuning ranges of about 0.85 GHz and 0.60 GHz via magnetic field and beam voltage tuning, respectively. Additionally, some non-stationary phenomena in the mode startup process are also analyzed. The investiga- tion in this paper presents guidance for future developing high-performance frequency-tunable gyrotrons toward terahertz applications.展开更多
Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The l...Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The linear and nonlinear magnetoacoustic responses determined by the magnetic properties of MNPs have attracted more and more attention in biomedical engineering. By considering the relaxation time of MNPs, we derive the formulae of second harmonic magnetoacoustic responses(2H-MARs) for a cylindrical MNP solution model based on the mechanical oscillations of MNPs in magnetoacoustic tomography with magnetic induction(MAT-MI). It is proved that only the second harmonic magnetoacoustic oscillations can be generated by MNPs under an alternating magnetic excitation. The acoustic pressure of the 2H-MAR is proportional to the square of the magnetic field intensity and exhibits a linear increase with the concentration of MNPs. Numerical simulations of the 2H-MAR are confirmed by the experimental measurements for various magnetic field intensities and solution concentrations using a laser vibrometer. The favorable results demonstrate the feasibility of the harmonic measurements without the fundamental interference of the electromagnetic excitation, and suggest a new harmonic imaging strategy of MAT-MI for MNPs with enhanced spatial resolution and improved signal-to-noise ratio in biomedical applications.展开更多
Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency d...Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency doubled laser beams from a mode-locked Nd: YAG laser. It was found that the signal intensity increased with the irradiating time and approached a saturation gradually. The effect may be explained reasonably by the DC field model.展开更多
The emergence of two dimensional(2D)materials has opened new possibilities for exhibiting second harmonic genera-tion(SHG)at the nanoscale,due to their remarkable optical response related to stable excitons at room te...The emergence of two dimensional(2D)materials has opened new possibilities for exhibiting second harmonic genera-tion(SHG)at the nanoscale,due to their remarkable optical response related to stable excitons at room temperature.However,the ultimate atomic-scale interaction length with light makes the SHG of Transition Metal Dichalcogenides(TM-Ds)monolayers naturally weak.Here,we propose coupling a monolayer of TMDs with a photonic grating slab that works with doubly resonant bound states in the continuum(BIC).The BIC slabs are designed to exhibit a pair of BICs,reson-ant with both the fundamental wave(FW)and the second harmonic wave(SHW).Firstly,the spatial mode matching can be fulfilled by tilting FW's incident angle.We theoretically demonstrate that this strategy leads to more than four orders of magnitude enhancement of SHG efficiency than a sole monolayer of TMDs,under a pump light intensity of 0.1 GW/cm^(2).Moreover,we demonstrate that patterning the TMDs monolayer can further enhance the spatial overlap coefficient,which leads to an extra three orders of magnitude enhancement of SHG efficiency.These results demonstrate remarkable pos-sibilities for enhancing SHG with nonlinear 2D materials,opening many opportunities for chip-based light sources,nano-lasers,imaging,and biochemical sensing.展开更多
A series of five chalcone derivatives with different substituents in para and meta posions have been synthesized, and single crystals were successfully grown in aceton solution by slow evaporation solution growth tech...A series of five chalcone derivatives with different substituents in para and meta posions have been synthesized, and single crystals were successfully grown in aceton solution by slow evaporation solution growth technique (SESGT). Single crystal X-ray studies revealed that all the crystals crystallized in noncentrosymmetric space group with their molecular dipoles perfectly aligned in a direction-favorable for large nonlinear optical effects. Kurtz powder tests revealed that all five materials have second-harmonic-generating properties with maximum efficiencies of approximately 14 times that of urea standard. UV-vis-NIR spectroscopy and thermogravimetric analyses are also presented for all of the reported materials. Among the five chalcones, high quality single crystals of 4-Methoxy-4'-chlorochalcone were grown by SESGT, and its crystalline perection were studied by using a high resolution X-ray diffractometry (HRXRD).展开更多
One of the methods for calculating electromagnetic wave dispersion in multi-layer structures is the transfer matrix method. In this paper, we use the transfer matrix method for second harmonic generation in a nonlinea...One of the methods for calculating electromagnetic wave dispersion in multi-layer structures is the transfer matrix method. In this paper, we use the transfer matrix method for second harmonic generation in a nonlinear multilayer structure. The nonlinear photonic crystals investigated in this paper are as one-dimensional multi-layered structures including ferroelectric materials such as LiTaO3. Our goal is to investigate the effect of the disorder on the transmission spectrum of electromagnetic waves. Our results showed that positional disorder has different effects on the transmitting band and the gap band. The disorder in the transmitting band reduces the transmission coefficient of the waves and increases the transmission coefficient of the waves in the gap band. Such work has not yet been done on nonlinear photonic crystals producing the second harmonic.展开更多
Within the second-order perturbation approximation, this paper investigates the physical process of generation of the time-domain second harmonic by a primary Lamb wave waveform in an elastic plate. The present work i...Within the second-order perturbation approximation, this paper investigates the physical process of generation of the time-domain second harmonic by a primary Lamb wave waveform in an elastic plate. The present work is performed based on the preconditions that the phase velocity matching is satisfied and that the transfer of energy from the primary Lamb wave to the double frequency Lamb wave is not zero. It investigates the influences of the difference between the group velocities of the primary Lamb wave and the double frequency Lamb wave, the propagation distance and the duration of the primary Lamb wave waveform on the envelope shape of the time-domain second harmonic. It finds that the maximum magnitude of the envelope of the second-harmonic waveform can grow within some propagation distance even if the condition of group velocity matching is not satisfied. Our analyses also indicate that the maximum magnitude of the envelope of the second-harmonic waveform is kept constant beyond a specific propagation distance. Furthermore, it concludes that the integration amplitude of the time-domain second-harmonic waveform always grows with propagation distance within the second-order perturbation. The present research yields new physical insight not previously available into the effect of generation of the time-domain second harmonic by propagation of a primary Lamb wave waveform.展开更多
On the basis of second-order perturbation approximate and modal expansion approach,we investigate the enhancement effect of cumulative second-harmonic generation(SHG)of circumferential guided waves(CGWs)in a circular ...On the basis of second-order perturbation approximate and modal expansion approach,we investigate the enhancement effect of cumulative second-harmonic generation(SHG)of circumferential guided waves(CGWs)in a circular tube,which is inherently induced by the closed propagation feature of CGWs.An appropriate mode pair of primary-and double-frequency CGWs satisfying the phase velocity matching and nonzero energy flux is selected to ensure that the second harmonic generated by primary CGW propagation can accumulate along the circumference.Using a coherent superposition of multi-waves,a model of unidirectional CGW propagation is established for analyzing the enhancement effect of cumulative SHG of primary CGW mode selected.The theoretical analyses and numerical simulations performed directly demonstrate that the second harmonic generated does have a cumulative effect along the circumferential direction and the closed propagation feature of CGWs does enhance the magnitude of cumulative second harmonic generated.Potential applications of the enhancement effect of cumulative SHG of CGWs are considered and discussed.The theoretical analysis and numerical simulation perspective presented here yield an insight previously unavailable into the physical mechanism of the enhancement effect of cumulative SHG by closed propagation feature of CGWs in a circular tube.展开更多
To understand and control the interfacial properties of polydiacetylenes(PDAs)vesicles withπ-conjugated backbone is very important for their colorimetric sensing of chemical and biological targets.In this work,we ado...To understand and control the interfacial properties of polydiacetylenes(PDAs)vesicles withπ-conjugated backbone is very important for their colorimetric sensing of chemical and biological targets.In this work,we adopted 10,12-pentacosadiynoic acid(PCDA)as the model molecule to prepare PDAs vesicles in aqueous solution with different forms(from monomer to blue-to-purple-to-red phase)by controlling the UV irradiation dose.The variations of the interfacial conformation of PDAs vesicles during chromatic transitions were inspected by the adsorption behaviors of probe molecules(4-(4-diethylaminostyry)-1-methylpyridinium iodide,D289)on vesicle surface with surface-specific second harmonic generation(SHG)and zeta potential measurements.Resonant SHG signal from D289 adsorbed on vesicle surface attenuated sharply,and the adsorption free energy as well as the corresponding two-photon fluorescence signal decreased slightly in chromatic transitions.While,the change in the surface density of the adsorbed D289 molecules for PDAs vesicles with different forms was relatively small as estimated from zeta potential measurements.The attenuation of the SHG intensity was thus attributed to the overall order-disorder transition and the changed orientation of D289 molecules caused by the gradual distortion of carboxyl head group driven by backbone perturbation.展开更多
Based on the three-coupled-oscillator molecular model we proposed, the relation between the second-order susceptibilities of a chiral film and the molecular hyperpolarizabilities is given. The effect of microscopic pa...Based on the three-coupled-oscillator molecular model we proposed, the relation between the second-order susceptibilities of a chiral film and the molecular hyperpolarizabilities is given. The effect of microscopic parameters on the second-order susceptibilities is simulated numerically and the difference between the efficiencies of s-polarized secondharmonic fields induced by the left- and the right-handed circularly-polarized fundamental beams is discussed. The theoretical basis for studying second-order nonlinear optical properties of the chiral molecular media with a tripod-like structure is provided in this paper.展开更多
This paper studies the type-I phase-matched second harmonic generation using 25-fs input laser pulses in a thick BBO crystal. The harmonic signal exhibits a narrow spectrum bandwidth, even though the input pulse has a...This paper studies the type-I phase-matched second harmonic generation using 25-fs input laser pulses in a thick BBO crystal. The harmonic signal exhibits a narrow spectrum bandwidth, even though the input pulse has a broad bandwidth. The energy transfer efficiency and modulation of the fundamental spectrum are investigated.展开更多
This work designs a four-platelet periodic multicrystal configuration in the second harmonic generation of ultra- short pulses as a new walk-off-compensating device. It theoretically investigates a proposed active and...This work designs a four-platelet periodic multicrystal configuration in the second harmonic generation of ultra- short pulses as a new walk-off-compensating device. It theoretically investigates a proposed active and a typical passive compensating scheme with the undepleted-pump approximation. The result shows that the angular and spectral band- widths are proportional to the number of crystal pairs as expected, but the temperature tunability is basically unaltered owing to inter-plate pulse interference. At the same time, an analysis reveals that a misuse of the phase mismatch factor is responsible for a historic controversy about pulse interference. A real design of an ultraviolet second harmonic generation (262.5 nm) is considered in a passive periodic [3-Barium Borate-calcite configuration, where the inter-plate pulse interference is found to form an azimuthal tuning restriction and to lower plate length tolerance. A subsequent numerical simulation with pump depletion is in good accordance with theoretical prediction.展开更多
A fibre laser at 1111.6 nm is frequency doubled by two inhomogeneous MgO:LiNbO3 waveguides and the output powers of 85 mW and 49 mW at 555.8 nm have been generated with the conversion efficiencies of 47% and 27% resp...A fibre laser at 1111.6 nm is frequency doubled by two inhomogeneous MgO:LiNbO3 waveguides and the output powers of 85 mW and 49 mW at 555.8 nm have been generated with the conversion efficiencies of 47% and 27% respectively. By analysing the second harmonic generation temperature tuning curves, we investigate the influence of the optical inhomogeneities upon the conversion efficiency. The final result shows that the efficiency difference is mainly affected by the optical inhomogeneities in our case.展开更多
The experiment on quasi-phase-matched second harmonic generation (SHG) in a channel waveguide was reported. The waveguide was made by annealed proton exchange in the periodically poled lithium niobate (PPLN) with the ...The experiment on quasi-phase-matched second harmonic generation (SHG) in a channel waveguide was reported. The waveguide was made by annealed proton exchange in the periodically poled lithium niobate (PPLN) with the period of PPLN of 14.9 μm, which was designed for cascading wavelength conversion in dense wavelength division multiplexer optical communications. The measurement results of SHG conversion efficiency as a function of fundamental wavelength at room temperature fit well to sinc^2 shape. The peak of SHG conversion efficiency was 75%·W~ -1 ·cm~ -2 as well as reported. The relationship between the center fundamental wavelength and temperature shows that SHG can be effectively tuned by the temperature in PPLN waveguide.展开更多
Most irradiation studies in the hydrogen bonded ferroelectrics have been concentrated on the transient defects induced by ionising radiation, such as ultraviolet (UV) light, where the defects are closely related to ...Most irradiation studies in the hydrogen bonded ferroelectrics have been concentrated on the transient defects induced by ionising radiation, such as ultraviolet (UV) light, where the defects are closely related to the optical properties. But heavy ion beam irradiation effects have rarely been studied. The structural, optical, and non-linear optical properties of the doped crystals were analyzed with the characterization studies, such as powder XRD, UV-Visible and second harmonic generation (SHG) measurements, respectively. The results for doped KDP crystal were compared with the results of the pure KDP crystals. The experiment results showed that Li^3+ irradiation leads to the development of a well-defined surface H peak in dye doped KDP crystals. The stability of KDP single crystal was improved by doping organic dyes. The nano-islands of dye in KDP were likely to be dissolved and enhance the non-linear optical properties of these materials.展开更多
The near-field and far-field second harmonic (SH) responses of a metal spherical nanoparticle placed in the focal region of a highly focused beam are investigated by using the calculation model based on three-dimens...The near-field and far-field second harmonic (SH) responses of a metal spherical nanoparticle placed in the focal region of a highly focused beam are investigated by using the calculation model based on three-dimensional finite-difference time-domain (FDTD) method. The results show that off-axis backward-propagating SH response can be reinforced by tightly focusing, due to the increase of the relative magnitude of the longitudinal field component and the phase shift along the propagation direction.展开更多
The temperature dependency of a 5-mo1% MgO-doped periodically poled lithium niobate waveguide was investi- gated in this paper. We started with the temperature-dependent refractive index equation for the waveguide. Se...The temperature dependency of a 5-mo1% MgO-doped periodically poled lithium niobate waveguide was investi- gated in this paper. We started with the temperature-dependent refractive index equation for the waveguide. Secondly, the temperature dependency of the second harmonic generation effect was experimentally researched under different temperatures and pump powers. The quasi-phase matched wavelengths, efficiency bandwidths and peak efficiencies of the waveguide were measured. The experimental results agreed with theoretical simulations, which are indispensable in the following all-optical sampling studies based on the cascaded second harmonic generation/difference-frequency generation process in the current device.展开更多
基金National Key Research and Development Program of China(No.2021YFE0114700)National Natural Science Foundation of China(Nos.52130701 and 51977096)。
文摘Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is diagnosed by the electric field induced second harmonic(E-FISH)method,and the time-resolved electric field under different conditions is investigated.When positive pulse voltage is applied,the electric field has a peak of about 25 kV cm-1at the rising edge of the voltage pulse.A dark channel is left behind the plasma bullet and the electric field in the dark channel is about 5 kV cm-1.On the other hand,when negative pulse voltage is applied,the electric field has a peak of-16 kV cm-1when the negative voltage is increased to-8 kV.A relatively bright channel is left behind the plasma head and the electric field in this relatively bright channel is about-6 kV cm-1.When the pulse rising time increases from 60 to 200 ns,the peak electric field at both the rising edge and the falling edge of the voltage decreases significantly.When 0.5%of oxygen is added to the main working gas helium,the peak electric field at the rising edge is only about 15 kV cm-1.On the other hand,when 0.5%nitrogen is added,the peak electric field increases especially at the falling edge of the voltage pulse,where it increases reversely from-12 to-16 kV cm-1(the minus sign only represents the direction of electric field).
基金Project supported by the Shanghai Leading Academic Discipline Project, China (Grant No B503)
文摘The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface. In general, the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur. However, the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied. Through boundary condition and initial condition of excitation, the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined. Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51325504,11474093,11622430 and 11474361the National Key Research and Development Program of China(2016YFC0801903-02)the Fundamental Research Funds for the Central Universities
文摘The influences of phase and group velocity matching on cumulative second harmonic generation of Lamb waves are investigated in numerical perspective. Finite element simulations of nonlinear Lamb wave propagation are performed for Lamb wave mode pairs with exact and approximate phase velocity matching, with and without group velocity matching, respectively. The evolution of time-domain second harmonic Lamb waves is analyzed with the propagation distance. The amplitudes of primary and second harmonic waves are calculated to characterize the acoustic nonlinearity. The results verify that phase velocity matching is necessary for generation of the cumulative second harmonic Lamb wave in numerical perspective, while group velocity matching is demonstrated to not be a necessary condition.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61471007,61531002,61522101,and 11275206)the Seeding Grant for Medicine and Information Science of Peking University,China(Grant No.2014-MI-01)
文摘Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interaction mechanism about propagating waves, featured by wave competition and wave cooperation, is presented and provides a new insight into the beam-wave interaction. The two different features revealed in the two different operation regions of low-order axial modes (LOAMs) and high-order axial modes (HOAMs) respectively determine the characteristic of the overall performance of the device essentially. The device performance is obtained by the simulation based on the time-domain nonlinear theory and shows that using a 12-kV/150-mA electron beam and TE 3,4 mode, the second harmonic gyrotron can generate terahertz radiations with frequency-tuning ranges of about 0.85 GHz and 0.60 GHz via magnetic field and beam voltage tuning, respectively. Additionally, some non-stationary phenomena in the mode startup process are also analyzed. The investiga- tion in this paper presents guidance for future developing high-performance frequency-tunable gyrotrons toward terahertz applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934009,11974187,and 11604156)。
文摘Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The linear and nonlinear magnetoacoustic responses determined by the magnetic properties of MNPs have attracted more and more attention in biomedical engineering. By considering the relaxation time of MNPs, we derive the formulae of second harmonic magnetoacoustic responses(2H-MARs) for a cylindrical MNP solution model based on the mechanical oscillations of MNPs in magnetoacoustic tomography with magnetic induction(MAT-MI). It is proved that only the second harmonic magnetoacoustic oscillations can be generated by MNPs under an alternating magnetic excitation. The acoustic pressure of the 2H-MAR is proportional to the square of the magnetic field intensity and exhibits a linear increase with the concentration of MNPs. Numerical simulations of the 2H-MAR are confirmed by the experimental measurements for various magnetic field intensities and solution concentrations using a laser vibrometer. The favorable results demonstrate the feasibility of the harmonic measurements without the fundamental interference of the electromagnetic excitation, and suggest a new harmonic imaging strategy of MAT-MI for MNPs with enhanced spatial resolution and improved signal-to-noise ratio in biomedical applications.
文摘Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency doubled laser beams from a mode-locked Nd: YAG laser. It was found that the signal intensity increased with the irradiating time and approached a saturation gradually. The effect may be explained reasonably by the DC field model.
基金financial supports from the National Natural Science Foundation of China(Grant No.11604150)Fundamental Research Funds for the Central Universities of China(Grant No.ZYGX2020J010)M.Rahmani.acknowledges support from the UK Research and Innovation Future Leaders Fellowship(MR/T040513/1)。
文摘The emergence of two dimensional(2D)materials has opened new possibilities for exhibiting second harmonic genera-tion(SHG)at the nanoscale,due to their remarkable optical response related to stable excitons at room temperature.However,the ultimate atomic-scale interaction length with light makes the SHG of Transition Metal Dichalcogenides(TM-Ds)monolayers naturally weak.Here,we propose coupling a monolayer of TMDs with a photonic grating slab that works with doubly resonant bound states in the continuum(BIC).The BIC slabs are designed to exhibit a pair of BICs,reson-ant with both the fundamental wave(FW)and the second harmonic wave(SHW).Firstly,the spatial mode matching can be fulfilled by tilting FW's incident angle.We theoretically demonstrate that this strategy leads to more than four orders of magnitude enhancement of SHG efficiency than a sole monolayer of TMDs,under a pump light intensity of 0.1 GW/cm^(2).Moreover,we demonstrate that patterning the TMDs monolayer can further enhance the spatial overlap coefficient,which leads to an extra three orders of magnitude enhancement of SHG efficiency.These results demonstrate remarkable pos-sibilities for enhancing SHG with nonlinear 2D materials,opening many opportunities for chip-based light sources,nano-lasers,imaging,and biochemical sensing.
文摘A series of five chalcone derivatives with different substituents in para and meta posions have been synthesized, and single crystals were successfully grown in aceton solution by slow evaporation solution growth technique (SESGT). Single crystal X-ray studies revealed that all the crystals crystallized in noncentrosymmetric space group with their molecular dipoles perfectly aligned in a direction-favorable for large nonlinear optical effects. Kurtz powder tests revealed that all five materials have second-harmonic-generating properties with maximum efficiencies of approximately 14 times that of urea standard. UV-vis-NIR spectroscopy and thermogravimetric analyses are also presented for all of the reported materials. Among the five chalcones, high quality single crystals of 4-Methoxy-4'-chlorochalcone were grown by SESGT, and its crystalline perection were studied by using a high resolution X-ray diffractometry (HRXRD).
文摘One of the methods for calculating electromagnetic wave dispersion in multi-layer structures is the transfer matrix method. In this paper, we use the transfer matrix method for second harmonic generation in a nonlinear multilayer structure. The nonlinear photonic crystals investigated in this paper are as one-dimensional multi-layered structures including ferroelectric materials such as LiTaO3. Our goal is to investigate the effect of the disorder on the transmission spectrum of electromagnetic waves. Our results showed that positional disorder has different effects on the transmitting band and the gap band. The disorder in the transmitting band reduces the transmission coefficient of the waves and increases the transmission coefficient of the waves in the gap band. Such work has not yet been done on nonlinear photonic crystals producing the second harmonic.
基金Project supported by the National Natural Science Foundation of China (Grant No 10974256)
文摘Within the second-order perturbation approximation, this paper investigates the physical process of generation of the time-domain second harmonic by a primary Lamb wave waveform in an elastic plate. The present work is performed based on the preconditions that the phase velocity matching is satisfied and that the transfer of energy from the primary Lamb wave to the double frequency Lamb wave is not zero. It investigates the influences of the difference between the group velocities of the primary Lamb wave and the double frequency Lamb wave, the propagation distance and the duration of the primary Lamb wave waveform on the envelope shape of the time-domain second harmonic. It finds that the maximum magnitude of the envelope of the second-harmonic waveform can grow within some propagation distance even if the condition of group velocity matching is not satisfied. Our analyses also indicate that the maximum magnitude of the envelope of the second-harmonic waveform is kept constant beyond a specific propagation distance. Furthermore, it concludes that the integration amplitude of the time-domain second-harmonic waveform always grows with propagation distance within the second-order perturbation. The present research yields new physical insight not previously available into the effect of generation of the time-domain second harmonic by propagation of a primary Lamb wave waveform.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11834008,11704410,11632004,11474361,and U1930202).
文摘On the basis of second-order perturbation approximate and modal expansion approach,we investigate the enhancement effect of cumulative second-harmonic generation(SHG)of circumferential guided waves(CGWs)in a circular tube,which is inherently induced by the closed propagation feature of CGWs.An appropriate mode pair of primary-and double-frequency CGWs satisfying the phase velocity matching and nonzero energy flux is selected to ensure that the second harmonic generated by primary CGW propagation can accumulate along the circumference.Using a coherent superposition of multi-waves,a model of unidirectional CGW propagation is established for analyzing the enhancement effect of cumulative SHG of primary CGW mode selected.The theoretical analyses and numerical simulations performed directly demonstrate that the second harmonic generated does have a cumulative effect along the circumferential direction and the closed propagation feature of CGWs does enhance the magnitude of cumulative second harmonic generated.Potential applications of the enhancement effect of cumulative SHG of CGWs are considered and discussed.The theoretical analysis and numerical simulation perspective presented here yield an insight previously unavailable into the physical mechanism of the enhancement effect of cumulative SHG by closed propagation feature of CGWs in a circular tube.
基金This work was supported by the National Natural Science Foundation of China(No.21403292,No.21403293,No.21473249,and No.21673285),and the funding from the Shenzhen city(No.JCYJ20170307150520453).
文摘To understand and control the interfacial properties of polydiacetylenes(PDAs)vesicles withπ-conjugated backbone is very important for their colorimetric sensing of chemical and biological targets.In this work,we adopted 10,12-pentacosadiynoic acid(PCDA)as the model molecule to prepare PDAs vesicles in aqueous solution with different forms(from monomer to blue-to-purple-to-red phase)by controlling the UV irradiation dose.The variations of the interfacial conformation of PDAs vesicles during chromatic transitions were inspected by the adsorption behaviors of probe molecules(4-(4-diethylaminostyry)-1-methylpyridinium iodide,D289)on vesicle surface with surface-specific second harmonic generation(SHG)and zeta potential measurements.Resonant SHG signal from D289 adsorbed on vesicle surface attenuated sharply,and the adsorption free energy as well as the corresponding two-photon fluorescence signal decreased slightly in chromatic transitions.While,the change in the surface density of the adsorbed D289 molecules for PDAs vesicles with different forms was relatively small as estimated from zeta potential measurements.The attenuation of the SHG intensity was thus attributed to the overall order-disorder transition and the changed orientation of D289 molecules caused by the gradual distortion of carboxyl head group driven by backbone perturbation.
基金Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No A200406).
文摘Based on the three-coupled-oscillator molecular model we proposed, the relation between the second-order susceptibilities of a chiral film and the molecular hyperpolarizabilities is given. The effect of microscopic parameters on the second-order susceptibilities is simulated numerically and the difference between the efficiencies of s-polarized secondharmonic fields induced by the left- and the right-handed circularly-polarized fundamental beams is discussed. The theoretical basis for studying second-order nonlinear optical properties of the chiral molecular media with a tripod-like structure is provided in this paper.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB806007)the National Natural Science Foundation of China (Grant Nos. 10574006,10634020 and 10821062)
文摘This paper studies the type-I phase-matched second harmonic generation using 25-fs input laser pulses in a thick BBO crystal. The harmonic signal exhibits a narrow spectrum bandwidth, even though the input pulse has a broad bandwidth. The energy transfer efficiency and modulation of the fundamental spectrum are investigated.
基金supported by the Tiptop-Talent Fund from Harbin University of Science and Technology
文摘This work designs a four-platelet periodic multicrystal configuration in the second harmonic generation of ultra- short pulses as a new walk-off-compensating device. It theoretically investigates a proposed active and a typical passive compensating scheme with the undepleted-pump approximation. The result shows that the angular and spectral band- widths are proportional to the number of crystal pairs as expected, but the temperature tunability is basically unaltered owing to inter-plate pulse interference. At the same time, an analysis reveals that a misuse of the phase mismatch factor is responsible for a historic controversy about pulse interference. A real design of an ultraviolet second harmonic generation (262.5 nm) is considered in a passive periodic [3-Barium Borate-calcite configuration, where the inter-plate pulse interference is found to form an azimuthal tuning restriction and to lower plate length tolerance. A subsequent numerical simulation with pump depletion is in good accordance with theoretical prediction.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774044)the National Key Basic Research and Development Program of China (Grant No. 2010CB922903)+1 种基金the Shanghai Pujiang Talent Program of China (Grant No. 07PJ14038)the Ph D Program Scholarship Fund of East China Normal University 2009 (Grant No. 2009049)
文摘A fibre laser at 1111.6 nm is frequency doubled by two inhomogeneous MgO:LiNbO3 waveguides and the output powers of 85 mW and 49 mW at 555.8 nm have been generated with the conversion efficiencies of 47% and 27% respectively. By analysing the second harmonic generation temperature tuning curves, we investigate the influence of the optical inhomogeneities upon the conversion efficiency. The final result shows that the efficiency difference is mainly affected by the optical inhomogeneities in our case.
基金The National Natural Science Foundation ofChina (No 60477016)Shanghai MunicipalEducation Commission"Shu Guang"Project
文摘The experiment on quasi-phase-matched second harmonic generation (SHG) in a channel waveguide was reported. The waveguide was made by annealed proton exchange in the periodically poled lithium niobate (PPLN) with the period of PPLN of 14.9 μm, which was designed for cascading wavelength conversion in dense wavelength division multiplexer optical communications. The measurement results of SHG conversion efficiency as a function of fundamental wavelength at room temperature fit well to sinc^2 shape. The peak of SHG conversion efficiency was 75%·W~ -1 ·cm~ -2 as well as reported. The relationship between the center fundamental wavelength and temperature shows that SHG can be effectively tuned by the temperature in PPLN waveguide.
文摘Most irradiation studies in the hydrogen bonded ferroelectrics have been concentrated on the transient defects induced by ionising radiation, such as ultraviolet (UV) light, where the defects are closely related to the optical properties. But heavy ion beam irradiation effects have rarely been studied. The structural, optical, and non-linear optical properties of the doped crystals were analyzed with the characterization studies, such as powder XRD, UV-Visible and second harmonic generation (SHG) measurements, respectively. The results for doped KDP crystal were compared with the results of the pure KDP crystals. The experiment results showed that Li^3+ irradiation leads to the development of a well-defined surface H peak in dye doped KDP crystals. The stability of KDP single crystal was improved by doping organic dyes. The nano-islands of dye in KDP were likely to be dissolved and enhance the non-linear optical properties of these materials.
基金Project supported by the National Natural Science Foundation of China(Grant No.61378005)
文摘The near-field and far-field second harmonic (SH) responses of a metal spherical nanoparticle placed in the focal region of a highly focused beam are investigated by using the calculation model based on three-dimensional finite-difference time-domain (FDTD) method. The results show that off-axis backward-propagating SH response can be reinforced by tightly focusing, due to the increase of the relative magnitude of the longitudinal field component and the phase shift along the propagation direction.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60777024 and 60978007)
文摘The temperature dependency of a 5-mo1% MgO-doped periodically poled lithium niobate waveguide was investi- gated in this paper. We started with the temperature-dependent refractive index equation for the waveguide. Secondly, the temperature dependency of the second harmonic generation effect was experimentally researched under different temperatures and pump powers. The quasi-phase matched wavelengths, efficiency bandwidths and peak efficiencies of the waveguide were measured. The experimental results agreed with theoretical simulations, which are indispensable in the following all-optical sampling studies based on the cascaded second harmonic generation/difference-frequency generation process in the current device.