We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utiliz...We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.展开更多
The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By a...The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.展开更多
In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosin...In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosine function for a linear operator A, C-wellposed of (α+1)-times abstract Cauchy problem and mild a -times integrated C-existence family of second order for A when the commutable condition is satisfied. In addition, if A = C-1AC, they are also equivalent to A generating the α -times integrated C-regularized cosine function. The characterization of an exponentially bounded mild α -times integrated C-existence family of second order is given out in terms of a Laplace transform.展开更多
This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant de...This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant derivative and the second one, the second covariant differential transformation group is set up. Under this transformation group, the sec ond class of differential invariants and integral invariants on curved surfaces is made clear. Besides, the symmetric struc ture of the tensor analysis on curved surfaces are revealed.展开更多
A study of the dynamic interaction between foundation and the underlying soil has been presented in a recent paper based on the assumption of saturated ground and elastic circular plate excited by the axisymmetrical h...A study of the dynamic interaction between foundation and the underlying soil has been presented in a recent paper based on the assumption of saturated ground and elastic circular plate excited by the axisymmetrical harmonic source. However, the assumption may not always be valid. The work is extended to the case of a circular plate resting on transversely isotropic saturated soil and subjected to a non-axisymmetrical harmonic force. The analysis is based on the theory of elastic wave in transversely isotropic saturated poroelastic media established. By the technique of Fourier expansion and Hankel transform, the governing difference equations for transversely isotropic saturated soil are easily solved and the cooresponding Hankel transformed stress and displacement solutions are obtained. Then, under the contact conditions, the problem leads to a pair of dual integral equations which describe the mixed boundary-value problem. Furthermore, the dual integral equations can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure. At the end, a numerical result is presented which indicates that on a certain frequency range, the displacement amplitude of the surface of the foundation increases with the increase of the frequency of the exciting force, and decreases in vibration form with the increase of the distance.展开更多
The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of ...The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved.A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.展开更多
Suppose X is a Banach space, and A is a closed operator. We give some equivalent conditions between A generating a local integrated cosine functions and the existence of solutions of abstract Cauchy problems.
The Liouville's integrability of the second order autonomous system is studied. It isproved that a second order polynomial system is Liouville integrable if and only if thereis an integral factor μ(x, y), such th...The Liouville's integrability of the second order autonomous system is studied. It isproved that a second order polynomial system is Liouville integrable if and only if thereis an integral factor μ(x, y), such that or a rational function in x and y.展开更多
In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficie...In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence.展开更多
We consider solving integral equations of the second kind defined on the half-line [0, infinity) by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the assoc...We consider solving integral equations of the second kind defined on the half-line [0, infinity) by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the associated integral operator. In this paper, we construct two different circulant integral operators to be used as preconditioners for the method to speed up its convergence rate. We prove that if the given integral operator is close to a convolution-type integral operator, then the preconditioned systems will have spectrum clustered around 1 and hence the preconditioned conjugate gradient method will converge superlinearly. Numerical examples are given to illustrate the fast convergence.展开更多
While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approxima...While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approximate solution. In this paper,we analyse the Nystrom solution of one-dimensional nonlinear Volterra integral equation of the second kind and show that approkimate solution admits an asymptotic error expansion in even powers of the step-size h, beginning with a term in h2. So that the Richardson's extrapolation can be done. This will increase the accuracy of numerical solution greatly.展开更多
The main purpose of this work is to provide a novel numerical approach for the Volterra integral equations based on a spectral approach. A Legendre-collocation method is proposed to solve the Volterra integral equatio...The main purpose of this work is to provide a novel numerical approach for the Volterra integral equations based on a spectral approach. A Legendre-collocation method is proposed to solve the Volterra integral equations of the second kind. We provide a rigorous error analysis for the proposed method, which indicates that the numerical errors decay exponentially provided that the kernel function and the source function are sufficiently smooth. Numerical results confirm the theoretical prediction of the exponential rate of convergence. The result in this work seems to be the first successful spectral approach (with theoretical justification) for the Volterra type equations.展开更多
This paper analyzes the geometric quantities that remain unchanged during parallel mapping (i.e., mapping from a reference curved surface to a parallel surface with identical normal direction). The second gradient o...This paper analyzes the geometric quantities that remain unchanged during parallel mapping (i.e., mapping from a reference curved surface to a parallel surface with identical normal direction). The second gradient operator, the second class of integral theorems, the Gauss-curvature-based integral theorems, and the core property of parallel mapping are used to derive a series of parallel mapping invariants or geometrically conserved quantities. These include not only local mapping invariants but also global mapping invafiants found to exist both in a curved surface and along curves on the curved surface. The parallel mapping invariants are used to identify important transformations between the reference surface and parallel surfaces. These mapping invariants and transformations have potential applications in geometry, physics, biomechanics, and mechanics in which various dynamic processes occur along or between parallel surfaces.展开更多
基金The NNSF (10371137 and 10201034) of Chinathe Foundation (20030558008) of Doctoral Program of National Higher Education, Guangdong Provincial Natural Science Foundation (1011170) of China and the Advanced Research Foundation of Zhongshan UniversityThe US National Science Foundation (9973427 and 0312113)NSF (10371122) of China and the Chinese Academy of Sciences under the program of "Hundred Distinguished Young Chinese Scientists."
文摘We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.
文摘The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.
基金This project is supported by the Natural Science Foundation of China and Science Development Foundation of the Colleges and University of Shanghai.
文摘In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosine function for a linear operator A, C-wellposed of (α+1)-times abstract Cauchy problem and mild a -times integrated C-existence family of second order for A when the commutable condition is satisfied. In addition, if A = C-1AC, they are also equivalent to A generating the α -times integrated C-regularized cosine function. The characterization of an exponentially bounded mild α -times integrated C-existence family of second order is given out in terms of a Laplace transform.
基金supported by the NSFC(11072125 and 11272175)the NSF of Jiangsu Province(SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(20130002110044)
文摘This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant derivative and the second one, the second covariant differential transformation group is set up. Under this transformation group, the sec ond class of differential invariants and integral invariants on curved surfaces is made clear. Besides, the symmetric struc ture of the tensor analysis on curved surfaces are revealed.
文摘A study of the dynamic interaction between foundation and the underlying soil has been presented in a recent paper based on the assumption of saturated ground and elastic circular plate excited by the axisymmetrical harmonic source. However, the assumption may not always be valid. The work is extended to the case of a circular plate resting on transversely isotropic saturated soil and subjected to a non-axisymmetrical harmonic force. The analysis is based on the theory of elastic wave in transversely isotropic saturated poroelastic media established. By the technique of Fourier expansion and Hankel transform, the governing difference equations for transversely isotropic saturated soil are easily solved and the cooresponding Hankel transformed stress and displacement solutions are obtained. Then, under the contact conditions, the problem leads to a pair of dual integral equations which describe the mixed boundary-value problem. Furthermore, the dual integral equations can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure. At the end, a numerical result is presented which indicates that on a certain frequency range, the displacement amplitude of the surface of the foundation increases with the increase of the frequency of the exciting force, and decreases in vibration form with the increase of the distance.
文摘The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved.A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.
文摘Suppose X is a Banach space, and A is a closed operator. We give some equivalent conditions between A generating a local integrated cosine functions and the existence of solutions of abstract Cauchy problems.
基金Project financed by the National Natural Science Foundation of China.
文摘The Liouville's integrability of the second order autonomous system is studied. It isproved that a second order polynomial system is Liouville integrable if and only if thereis an integral factor μ(x, y), such that or a rational function in x and y.
基金supported by National Natural Science Foundation of China(Grant No.10901093)National Science Foundation of Shandong Province(Grant No.ZR2013AM006)
文摘In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence.
文摘We consider solving integral equations of the second kind defined on the half-line [0, infinity) by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the associated integral operator. In this paper, we construct two different circulant integral operators to be used as preconditioners for the method to speed up its convergence rate. We prove that if the given integral operator is close to a convolution-type integral operator, then the preconditioned systems will have spectrum clustered around 1 and hence the preconditioned conjugate gradient method will converge superlinearly. Numerical examples are given to illustrate the fast convergence.
文摘While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approximate solution. In this paper,we analyse the Nystrom solution of one-dimensional nonlinear Volterra integral equation of the second kind and show that approkimate solution admits an asymptotic error expansion in even powers of the step-size h, beginning with a term in h2. So that the Richardson's extrapolation can be done. This will increase the accuracy of numerical solution greatly.
基金supported by CERG Grants of Hong Kong Research Grant CouncilFRG grants of Hong Kong Baptist University
文摘The main purpose of this work is to provide a novel numerical approach for the Volterra integral equations based on a spectral approach. A Legendre-collocation method is proposed to solve the Volterra integral equations of the second kind. We provide a rigorous error analysis for the proposed method, which indicates that the numerical errors decay exponentially provided that the kernel function and the source function are sufficiently smooth. Numerical results confirm the theoretical prediction of the exponential rate of convergence. The result in this work seems to be the first successful spectral approach (with theoretical justification) for the Volterra type equations.
基金Supported by the National Natural Science Foundation of China(Nos.10572076 and 10872114)the Natural Science Foundation of Jiangsu Province,China (No.BK2008370)
文摘This paper analyzes the geometric quantities that remain unchanged during parallel mapping (i.e., mapping from a reference curved surface to a parallel surface with identical normal direction). The second gradient operator, the second class of integral theorems, the Gauss-curvature-based integral theorems, and the core property of parallel mapping are used to derive a series of parallel mapping invariants or geometrically conserved quantities. These include not only local mapping invariants but also global mapping invafiants found to exist both in a curved surface and along curves on the curved surface. The parallel mapping invariants are used to identify important transformations between the reference surface and parallel surfaces. These mapping invariants and transformations have potential applications in geometry, physics, biomechanics, and mechanics in which various dynamic processes occur along or between parallel surfaces.