A physical mechanism by which nose bluntness suppresses second-mode instability is proposed.Considered are 7 degree half-angle straight cones with nose bluntness radii of 0.15 mm, 3.556 mm,5 mm, 9.525 mm, 12.7 mm and ...A physical mechanism by which nose bluntness suppresses second-mode instability is proposed.Considered are 7 degree half-angle straight cones with nose bluntness radii of 0.15 mm, 3.556 mm,5 mm, 9.525 mm, 12.7 mm and 25.4 mm at tunnel conditions relevant to the AFOSR-Notre Dame Large Mach 6 Quiet Tunnel. It is shown that second-mode suppression is achieved via entropy layer modulation of the basic state density gradient. A weakening of the density gradient disrupts the acoustic resonance necessary to sustain second-mode growth. These results are consistent with the thermoacoustic interpretation which posits that second-mode instability can be modeled as thermoacoustic resonance of acoustic energy trapped within an acoustic impedance well.Furthermore, the generalized inflection point criterion of Lees and Lin is applied to develop a criterion for the existence of second-mode instability based on the strength of the basic state density gradient.展开更多
Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control sy...Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR.展开更多
This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to c...This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to control buck switch mode converter.The idea behind this strategy is to suppress chattering and maintain robustness and finite time convergence properties of the output voltage error to the equilibrium point under the load variations and parametric uncertainties.In addition,the influence of the twisting algorithm on the performance of closed-loop system is investigated and compared with other algorithms of first order sliding mode control such as adaptive sliding mode control(ASMC),nonsingular terminal sliding mode control(NTSMC).In comparative evaluation,the transient response of the output voltage with the step change in the load and the start-up response of the output voltage with the step change in the input voltage of buck converter were compared.Experimental results were obtained from a hardware setup constructed in laboratory.Finally,for all of the surveyed control methods,the theoretical considerations,numerical simulations,and experimental measurements from a laboratory prototype are compared for different operating points.It is shown that the proposed twisting method presents an improvement in steady state error and settling time of output voltage during load changes.展开更多
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame...The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.展开更多
A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency ...A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals.展开更多
An attitude controller using the second order sliding mode control methodology with a backstepping approach(SOSMCB)is designed and implemented for a spinning missile with two internal moving mass blocks.The system c...An attitude controller using the second order sliding mode control methodology with a backstepping approach(SOSMCB)is designed and implemented for a spinning missile with two internal moving mass blocks.The system consists of a rigid body and two radial internal moving mass blocks and its mathematical model is established based on Newtonian mechanics.The control scheme integrates a second order sliding mode control algorithm into the last step of the backstepping approach,and its stability is proved by means of a Lyapunov function.The performance of the controller is demonstrated by numerical simulations,the results show that the attitude controller is stable and effective.展开更多
We demonstrated a robust power-scalable Kerr-lens mode-locked(KLM) operation based on a Yb:YAG thin-disk oscillator.15-W,272-fs pulses were realized at a repetition rate of 86.7 MHz with an additional Kerr medium a...We demonstrated a robust power-scalable Kerr-lens mode-locked(KLM) operation based on a Yb:YAG thin-disk oscillator.15-W,272-fs pulses were realized at a repetition rate of 86.7 MHz with an additional Kerr medium and a 2.5 mm hard aperture in the cavity.247-fs pulses with an average power of 11 W could also be obtained by using a 2.4 mm hard aperture.Based on this shorter pulse,high efficient second-harmonic generation(SHG) was performed with a 1.7-mm-long Li B3O5(LBO) crystal.The SHG laser power was up to 5 W with the power fluctuation RMS of 1% measured over one hour.展开更多
Mode S Second Surveillance Radar (SSR) is very important means for Air Traffic Control (ATC) now and future,all the responding data which the radar receives need parity processing. Bit and confidence declaration is an...Mode S Second Surveillance Radar (SSR) is very important means for Air Traffic Control (ATC) now and future,all the responding data which the radar receives need parity processing. Bit and confidence declaration is an vital step before error detection and error correction. Based on the commonly used baseline multi-sample algorithm,different conditions are presented and analyzed,the conditions under which error happens are pointed out,and the algorithm in which two statistical variables are added to avoid false declaration. In addition,the moving average method is used to preprocess the sampled data,so as to reduce the influence of noise. The merits the baseline multi-sample technique owes are preserved,and the added computation is small. The declaration veracity is improved,and consequently makes error detection and error correction be facilitated suc-cessfully.展开更多
By examining the second leading mode (EOF2) of the summer rainfall in China during 1958 2001 and associated circulations, the authors found that this prominent mode was a dipole pattern with rainfall decreasing to t...By examining the second leading mode (EOF2) of the summer rainfall in China during 1958 2001 and associated circulations, the authors found that this prominent mode was a dipole pattern with rainfall decreasing to the north of the Yangtze River and increasing to the south. This reverse relationship of the rainfalls to the north and to the south of the Yangtze River was related with the meridional circulations within East Asia and the neighboring region, excited by SST in the South China Sea-northwestern Pacific. When the SST was warmer, the geopotential heights at 500 hPa were positive in the low and high latitudes and negative in the middle latitudes. The anticyclone in the low latitudes favored the subtropical high over the northwestern Pacific (SHNP) shifting southwestward, leading to additional moisture transport over southern China. The anomalous atmospheric circulations along the East Asian coast tends to enhance upward movement over the region. Subsequently, rainfall in southern China is enhanced.展开更多
Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interactio...Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interaction mechanism about propagating waves, featured by wave competition and wave cooperation, is presented and provides a new insight into the beam-wave interaction. The two different features revealed in the two different operation regions of low-order axial modes (LOAMs) and high-order axial modes (HOAMs) respectively determine the characteristic of the overall performance of the device essentially. The device performance is obtained by the simulation based on the time-domain nonlinear theory and shows that using a 12-kV/150-mA electron beam and TE 3,4 mode, the second harmonic gyrotron can generate terahertz radiations with frequency-tuning ranges of about 0.85 GHz and 0.60 GHz via magnetic field and beam voltage tuning, respectively. Additionally, some non-stationary phenomena in the mode startup process are also analyzed. The investiga- tion in this paper presents guidance for future developing high-performance frequency-tunable gyrotrons toward terahertz applications.展开更多
Objective:To discuss the effect of prolonged second stage of labor on maternal and neonatal outcomes.Methods:A total of 101 primiparas with the length of second stage of labor longer than 2 h were selected and pregnan...Objective:To discuss the effect of prolonged second stage of labor on maternal and neonatal outcomes.Methods:A total of 101 primiparas with the length of second stage of labor longer than 2 h were selected and pregnant women with the length less than 2 h served as control.The maternal and neonatal outcomes of two groups were observed and compared.Results:A total of 62.1%(18/11) with the length of second stage of labor between 120 min and 180 min,46.7%(28/32) between 181 min and 240 min and 12 longer than 241 min underwent vaginal delivery.The longer the length of second stage of labor,the lower score of Apgar scale for infants in 1 min,and the higher the incidence of asphyxia.But there was no difference in scale in 5 min.As second stage of labor prolonged,the incidences of cesarean section and of postpartum hemorrhage increased. Conclusions:Almost half of puerperas with the length of second stage of labor longer than 2 h underwent vaginal delivery.The prolonged second stage of labor can decrease the score of Apgar scale in 1 min,increase the incidence of asphyxia,but has no effect on scale in 5 min.It still need more evidence from evidence medicine to definition of time and treatment of second stage of labor.展开更多
基金support from the Air Force Office of Scientific Research(AFOSR)(Grant FA9550-20-10047)。
文摘A physical mechanism by which nose bluntness suppresses second-mode instability is proposed.Considered are 7 degree half-angle straight cones with nose bluntness radii of 0.15 mm, 3.556 mm,5 mm, 9.525 mm, 12.7 mm and 25.4 mm at tunnel conditions relevant to the AFOSR-Notre Dame Large Mach 6 Quiet Tunnel. It is shown that second-mode suppression is achieved via entropy layer modulation of the basic state density gradient. A weakening of the density gradient disrupts the acoustic resonance necessary to sustain second-mode growth. These results are consistent with the thermoacoustic interpretation which posits that second-mode instability can be modeled as thermoacoustic resonance of acoustic energy trapped within an acoustic impedance well.Furthermore, the generalized inflection point criterion of Lees and Lin is applied to develop a criterion for the existence of second-mode instability based on the strength of the basic state density gradient.
基金supported by National Natural Science Foundation of China (Grant No. 61075081)State Key Laboratory of Robotics Technique and System Foundation,Harbin Institute of Technology,China(Grant No. SKIRS200802A02)
文摘Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR.
文摘This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to control buck switch mode converter.The idea behind this strategy is to suppress chattering and maintain robustness and finite time convergence properties of the output voltage error to the equilibrium point under the load variations and parametric uncertainties.In addition,the influence of the twisting algorithm on the performance of closed-loop system is investigated and compared with other algorithms of first order sliding mode control such as adaptive sliding mode control(ASMC),nonsingular terminal sliding mode control(NTSMC).In comparative evaluation,the transient response of the output voltage with the step change in the load and the start-up response of the output voltage with the step change in the input voltage of buck converter were compared.Experimental results were obtained from a hardware setup constructed in laboratory.Finally,for all of the surveyed control methods,the theoretical considerations,numerical simulations,and experimental measurements from a laboratory prototype are compared for different operating points.It is shown that the proposed twisting method presents an improvement in steady state error and settling time of output voltage during load changes.
基金Project supported by the LEB Research LaboratoryDepartment of Electrical Engineering,University of Batna 2, Algeria。
文摘The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.
文摘A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals.
基金Supported by the National Natural Science Foundation of China(11202023)
文摘An attitude controller using the second order sliding mode control methodology with a backstepping approach(SOSMCB)is designed and implemented for a spinning missile with two internal moving mass blocks.The system consists of a rigid body and two radial internal moving mass blocks and its mathematical model is established based on Newtonian mechanics.The control scheme integrates a second order sliding mode control algorithm into the last step of the backstepping approach,and its stability is proved by means of a Lyapunov function.The performance of the controller is demonstrated by numerical simulations,the results show that the attitude controller is stable and effective.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB922402)the National Major Instrument Program of China(Grant No.2012YQ120047)the National Natural Science Foundation of China(Grant Nos.11434016 and 61210017)
文摘We demonstrated a robust power-scalable Kerr-lens mode-locked(KLM) operation based on a Yb:YAG thin-disk oscillator.15-W,272-fs pulses were realized at a repetition rate of 86.7 MHz with an additional Kerr medium and a 2.5 mm hard aperture in the cavity.247-fs pulses with an average power of 11 W could also be obtained by using a 2.4 mm hard aperture.Based on this shorter pulse,high efficient second-harmonic generation(SHG) was performed with a 1.7-mm-long Li B3O5(LBO) crystal.The SHG laser power was up to 5 W with the power fluctuation RMS of 1% measured over one hour.
文摘Mode S Second Surveillance Radar (SSR) is very important means for Air Traffic Control (ATC) now and future,all the responding data which the radar receives need parity processing. Bit and confidence declaration is an vital step before error detection and error correction. Based on the commonly used baseline multi-sample algorithm,different conditions are presented and analyzed,the conditions under which error happens are pointed out,and the algorithm in which two statistical variables are added to avoid false declaration. In addition,the moving average method is used to preprocess the sampled data,so as to reduce the influence of noise. The merits the baseline multi-sample technique owes are preserved,and the added computation is small. The declaration veracity is improved,and consequently makes error detection and error correction be facilitated suc-cessfully.
基金supported by the National Basic Research Program of China(Grant Nos 2004CB418302 and 2009CB421404)Na-tional Natural Science Foundation of China (Grant No40675058)
文摘By examining the second leading mode (EOF2) of the summer rainfall in China during 1958 2001 and associated circulations, the authors found that this prominent mode was a dipole pattern with rainfall decreasing to the north of the Yangtze River and increasing to the south. This reverse relationship of the rainfalls to the north and to the south of the Yangtze River was related with the meridional circulations within East Asia and the neighboring region, excited by SST in the South China Sea-northwestern Pacific. When the SST was warmer, the geopotential heights at 500 hPa were positive in the low and high latitudes and negative in the middle latitudes. The anticyclone in the low latitudes favored the subtropical high over the northwestern Pacific (SHNP) shifting southwestward, leading to additional moisture transport over southern China. The anomalous atmospheric circulations along the East Asian coast tends to enhance upward movement over the region. Subsequently, rainfall in southern China is enhanced.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61471007,61531002,61522101,and 11275206)the Seeding Grant for Medicine and Information Science of Peking University,China(Grant No.2014-MI-01)
文摘Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interaction mechanism about propagating waves, featured by wave competition and wave cooperation, is presented and provides a new insight into the beam-wave interaction. The two different features revealed in the two different operation regions of low-order axial modes (LOAMs) and high-order axial modes (HOAMs) respectively determine the characteristic of the overall performance of the device essentially. The device performance is obtained by the simulation based on the time-domain nonlinear theory and shows that using a 12-kV/150-mA electron beam and TE 3,4 mode, the second harmonic gyrotron can generate terahertz radiations with frequency-tuning ranges of about 0.85 GHz and 0.60 GHz via magnetic field and beam voltage tuning, respectively. Additionally, some non-stationary phenomena in the mode startup process are also analyzed. The investiga- tion in this paper presents guidance for future developing high-performance frequency-tunable gyrotrons toward terahertz applications.
文摘Objective:To discuss the effect of prolonged second stage of labor on maternal and neonatal outcomes.Methods:A total of 101 primiparas with the length of second stage of labor longer than 2 h were selected and pregnant women with the length less than 2 h served as control.The maternal and neonatal outcomes of two groups were observed and compared.Results:A total of 62.1%(18/11) with the length of second stage of labor between 120 min and 180 min,46.7%(28/32) between 181 min and 240 min and 12 longer than 241 min underwent vaginal delivery.The longer the length of second stage of labor,the lower score of Apgar scale for infants in 1 min,and the higher the incidence of asphyxia.But there was no difference in scale in 5 min.As second stage of labor prolonged,the incidences of cesarean section and of postpartum hemorrhage increased. Conclusions:Almost half of puerperas with the length of second stage of labor longer than 2 h underwent vaginal delivery.The prolonged second stage of labor can decrease the score of Apgar scale in 1 min,increase the incidence of asphyxia,but has no effect on scale in 5 min.It still need more evidence from evidence medicine to definition of time and treatment of second stage of labor.