Background:Fluorescence bio-imaging in the second near-infrared window(NIR-II FL,1000-1700nm)has great potential in clinical theranostics,which is of great importance providing precise locations of lesions and molecul...Background:Fluorescence bio-imaging in the second near-infrared window(NIR-II FL,1000-1700nm)has great potential in clinical theranostics,which is of great importance providing precise locations of lesions and molecular dynamic actions simultaneously in a single nanoprobe.Methods:T here has been an upsurge of multidisciplinary research focusing on developing functional types of inorganic and organic nanoprobes that can be used for NIR-II FL with the high spatiotemporal resolution,deep tissue penetration,and negligible auto-fluorescence.Results:In this mini-review,we summarize recent progress in inorganic/organic NIR-II FL nanoprobes.We introduce the design and properties of inorganic and organic nanoprobes,in the order of single-walled carbon nanotubes,quantum dots,rare-earth-doped nanoparticles,metal nanoclusters and organic fluorophores,expect to realize precise diagnosis and efficient image-guided therapy.Conclusion:Meanwhile,to elucidate the problems and perspectives,we aim to offer diverse biological applications of inorganic/organic NIR-II FL nanoprobes and accelerate the clinical transformation progress.展开更多
We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation (SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. Th...We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation (SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. The home-made Yb:LYSO oscillator centered at 1035 nm delivers an average power of 2 W and a pulse duration as short as 351 fs. TWo MgO doped periodically poled lithium niobates (MgO:PPLN) with grating periods of 28.5-31.5 μm in steps of 0.5 μm and 19.5-21.3μm in steps of 0.2 μm are used for the OPO and intracavity SHG, respectively. The maximum average output power of 180 mW at 798 nm was obtained and the output pulses have pulse duration of 313 fs at 792 nm if a sech2-pulse shape was assumed. In addition, tunable signal femtosecond pulses from 1428 nm to 1763 nm are also realized with the maximum average power of 355 mW at 1628 nm.展开更多
Creation of new fluorophores is important for understanding the structure-property relationship,by which the required optical properties are likely to be attained.Herein,through theory calculation,it is found that fur...Creation of new fluorophores is important for understanding the structure-property relationship,by which the required optical properties are likely to be attained.Herein,through theory calculation,it is found that furan-modified thiadiazolo quinoxaline acting as an electron acceptor can endow donor-acceptor-donor(D-A-D)type second near-infrared(NIR-Ⅱ)fluorophores with longer emission wavelength than the other thiadiazolo quinoxaline-based acceptors containing pyridine,pyrrole,thiophene,and phenyl groups,respectively.On the basis of this theoretical prediction,a D-A-D type NIR-Ⅱ fluorophore with 6,7-di(furan-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline(DFTQ)as the acceptor and dithieno[3,2-b:2′,3′-d]pyrrole(DTP)as the donor is designed and synthesized,and the aggregation-induced emission(AIE)function is further achieved by introducing the AIE units of tetraphenylethylene(TPE)and triphenylamine(TPA),respectively,totally forming three NIR-Ⅱ fluorophores DFTQ-DTP,DFTQ-DTPE,and DFTQ-DTPA.For biological applications,the fluorophores are encapsulated by amphiphilic DSPE-PEG2000 to generate water-dispersible nanoparticles(NPs).Almost the whole emission of each of the NPs falls into the NIR-Ⅱ spectral range,with part emission beyond 1300 nm.By using DFTQ-DTPA NPs as the contrast and photothermal therapy(PTT)agent,high-resolution in vivo fluorescence imaging is achieved in the greater than 1300 nm window,and their good performance in photoacoustic imaging and high tumor PTT efficacy in tumor-bearing mice are also demonstrated.Taken together,this work mainly provides a strong electron acceptor for constructing longemitting fluorophores,and by using the electron acceptor,a AIE fluorophore with desirable quantum yield(QY)and photothermal conversion efficienciy(PCE)is synthesized and demonstrated to be promising in fluorescence/photoacoustic imaging and PTT.展开更多
In this editorial,we comment on the recent article by Fei et al exploring the field of near-infrared spectroscopy(NIRS)research in schizophrenia from a bibliometrics perspective.In recent years,NIRS has shown unique a...In this editorial,we comment on the recent article by Fei et al exploring the field of near-infrared spectroscopy(NIRS)research in schizophrenia from a bibliometrics perspective.In recent years,NIRS has shown unique advantages in the auxiliary diagnosis of schizophrenia,and the introduction of bibliometrics has provided a macro perspective for research in this field.Despite the opportunities brought about by these technological developments,remaining challenges require multidi-sciplinary approach to devise a reliable and accurate diagnosis system for schizo-phrenia.Nonetheless,NIRS-assisted technology is expected to contribute to the division of methods for early intervention and treatment of schizophrenia.展开更多
BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patie...BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patients with MCI is unclear.AIM To explore the near-infrared brain function characteristics of MCI with sleep disorders.METHODS A total of 120 patients with MCI(MCI group)and 50 healthy subjects(control group)were selected.All subjects underwent the functional near-infrared spec-troscopy test.Collect baseline data,Mini-Mental State Examination,Montreal Cognitive Assessment scale,fatigue severity scale(FSS)score,sleep parameter,and oxyhemoglobin(Oxy-Hb)concentration and peak time of functional near-infrared spectroscopy test during the task period.The relationship between Oxy-RESULTS Compared with the control group,the FSS score of the MCI group was higher(t=11.310),and the scores of Pittsburgh sleep quality index,sleep time,sleep efficiency,nocturnal sleep disturbance,and daytime dysfunction were higher(Z=-10.518,-10.368,-9.035,-10.661,-10.088).Subjective sleep quality and total sleep time scores were lower(Z=-11.592,-9.924).The sleep efficiency of the MCI group was lower,and the awakening frequency,rem sleep latency period,total sleep time,and oxygen desaturation index were higher(t=5.969,5.829,2.887,3.003,5.937).The Oxy-Hb concentration at T0,T1,and T2 in the MCI group was lower(t=14.940,11.280,5.721),and the peak time was higher(t=18.800,13.350,9.827).In MCI patients,the concentration of Oxy-Hb during T0 was negatively correlated with the scores of Pittsburgh sleep quality index,sleep time,total sleep time,and sleep efficiency(r=-0.611,-0.388,-0.563,-0.356).It was positively correlated with sleep efficiency and total sleep time(r=0.754,0.650),and negatively correlated with oxygen desaturation index(r=-0.561)and FSS score(r=-0.526).All comparisons were P<0.05.CONCLUSION Patients with MCI and sleep disorders have lower near-infrared brain function than normal people,which is related to sleep quality.Clinically,a comprehensive assessment of the near-infrared brain function of patients should be carried out to guide targeted treatment and improve curative effect.展开更多
Heptamethine cyanine dyes,typified by indocyanine green,have been extensively employed as bioimaging indicators and theranostic agents.Significant efforts have been made to develop functional heptamethine cyanine dyes...Heptamethine cyanine dyes,typified by indocyanine green,have been extensively employed as bioimaging indicators and theranostic agents.Significant efforts have been made to develop functional heptamethine cyanine dyes with outstanding bioimaging and theranostic utilities.In this work,we rationally designed and successfully developed a novel indolium-like heptamethine cyanine dye by installing indolium-derived polycyclic aromatic hydrocarbons on the terminal ends of a conjugated polyene backbone.This dye showed excellent photostability and showed bright fluorescent emission in the second near-infrared(NIR-Ⅱ)window with a peak at approximately 1120 nm.Such long wavelength emission prompted a superior bioimaging resolution in vivo.In particular,this NIR-Ⅱ dye had the remarkable capability of marking the blood vessels of the hindlimbs,abdomens,and brains of mice.More significantly,this dye involved a typical indolium-like heptamethine skeleton and exhibited two strong absorption bands in the 700–1300 nm NIR range,which endowed it with an intrinsic tumor-targeting capability and a high photothermal conversion efficiency(up to 68.2%),serving for the photothermal therapy of tumors under the guidance of NIR-Ⅱ fluorescence imaging.This work provides an efficient design strategy for achieving indolium-like heptamethine cyanine dyes with further NIR-Ⅱ emission.展开更多
Organic dyes with strong absorption in the second near-infrared(NIR-II)window(1000-1700 nm)have multiple applications.However,the design and synthesis of stable NIR-II absorbing organic dyes are very challenging and c...Organic dyes with strong absorption in the second near-infrared(NIR-II)window(1000-1700 nm)have multiple applications.However,the design and synthesis of stable NIR-II absorbing organic dyes are very challenging and constantly defy our synthetic ability.In this work,we have successfully synthesized a series of soluble and stable fused thienoisoindigo(nThIID)ribbons.The absorption maximum(λ_(max))of the ribbons increases from 644 nm of 1ThIID to 1252 nm of 6ThIID.Importantly,nThIIDs with n≥4 all display strong absorption in the NIR-II window with molar extinction coefficients(ε_(max))greater than 105 L mol^(−1)cm^(−1)atλmax.These molecules are promising photothermal conversion dyes with photothermal conversion efficiencies of ca.60%under 1064 nm laser irradiation.展开更多
Photothermal therapy(PTT)triggered by second near-infrared(NIR-II)light(1000–1400 nm)has shown great potential in tumor ablation because of its good tissue penetrability.However,NIR-II PTT still cannot treat tumors u...Photothermal therapy(PTT)triggered by second near-infrared(NIR-II)light(1000–1400 nm)has shown great potential in tumor ablation because of its good tissue penetrability.However,NIR-II PTT still cannot treat tumors underneath skin because of the light scattering effect of skin components.This research aims to promote the NIR-II penetrability of skin tissue by weakening the light scattering effect from the refractive index inhomogeneity among skin constituents.展开更多
Second near-infrared(NIR-II)fluorescence imaging is a recently emerged technique and is highly useful for accurate diagnosis of cancer.Although a diverse array of fluorescent nanomaterials have been developed to enabl...Second near-infrared(NIR-II)fluorescence imaging is a recently emerged technique and is highly useful for accurate diagnosis of cancer.Although a diverse array of fluorescent nanomaterials have been developed to enable NIR-II fluorescence in various situations,they normally fail to unify the clinical techniques,such as computed tomography(CT)and magnetic resonance imaging(MRI).Therefore,exploiting multimodal agents to integrate the newly emerged NIR-II fluorescence and traditional clinical techniques would be of key significance.Here,we report a rational fabrication of neodymium(Nd)-doped gadolinium tungstate nanoparticles(NPs)that are subsequentially decorated with a hydrophilic layer and demonstrate that they can achieve the harmonious integration of NIR-II fluorescence imaging,CT,and MRI.The NIR-II fluorescence emission was activated by an incident light with discrete wavelength ranging from 250 to 810 nm.NIR-II fluorescence-CT-MRI associated trimodal imaging was subsequently demonstrated for breast cancer by an 808 nm laser,along with the estimation of NIR-II fluorescence imaging for cervical cancer.The integration of newly emerged and traditional clinical imaging techniques highlights the huge potential of rare-earth-doped NPs for multimodal imaging of different types of cancer.展开更多
Optical imaging in the second near-infrared(NIR-II,1,000-1,700 nm)window with much reduced tissue scattering plays a crucial role in life sciences due to its high sensitivity and high spatio-temporal resolutions^([1])...Optical imaging in the second near-infrared(NIR-II,1,000-1,700 nm)window with much reduced tissue scattering plays a crucial role in life sciences due to its high sensitivity and high spatio-temporal resolutions^([1]).Therefore,researchers are committed to developing various types of NIR-II fluorescent probes,such as organic dyes.展开更多
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
Fluorescence imaging is capable of acquiring anatomical and functional infor- mation with high spatial and temporal resolution. This imaging technique has been indispensable in biological research and disease detectio...Fluorescence imaging is capable of acquiring anatomical and functional infor- mation with high spatial and temporal resolution. This imaging technique has been indispensable in biological research and disease detection/diagnosis. Imaging in the visible and to a lesser degree, in the near-infrared (NIR) regions below 900 nm, suffers from autofluorescence arising from endogenous fluorescent molecules in biological tissues. This autofluorescence interferes with fluorescent molecules of interest, causing a high background and low detection sensitivity. Here, we report that fluorescence imaging in the 1,500-1,700-nm region (termed "NIR-IIb") under 808-nm excitation results in nearly zero tissue autofluorescence, allowing for background-free imaging of fluorescent species in otherwise notoriously autofluorescent biological tissues, including liver. Imaging of the intrinsic fluorescence of individual fluorophores, such as a single carbon nanotube, can be readily achieved with high sensitivity and without autofluorescence background in mouse liver within the 1,500-1,700-nm wavelength region.展开更多
BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and prov...BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and providing direct and objective assessment information.AIM To explore the research field of NIRS in schizophrenia from the perspective of bibliometrics.METHODS The Web of Science Core Collection was used as the search tool,and the last search date was April 21,2024.Bibliometric indicators,such as the numbers of publications and citations,were recorded.Bibliometrix and VOS viewer were used for visualization analysis.RESULTS A total of 355 articles from 105 journals were included in the analysis.The overall trend of the number of research publications increased.Schizophrenia Research was identified as an influential journal in the field.Kasai K was one of the most influential and productive authors in this area of research.The University of Tokyo and Japan had the highest scientific output for an institution and a country,respectively.The top ten keywords were“schizophrenia”,“activation”,“near-infrared spectroscopy”,“verbal fluency task”,“cortex”,“brain,performance”,“workingmemory”,“brain activation”,and“prefrontal cortex”.CONCLUSION Our study reveals the evolution of knowledge and emerging trends in the field of NIRS in schizophrenia.the research focus is shifting from underlying disease characteristics to more in-depth studies of brain function and physiological mechanisms.展开更多
The emerging technique of photoacoustic imaging,especially in the near infra-red(NIR)window,permits high resolution,deep-penetration,clinically reliable sensing.However,few contrast agents are available that can speci...The emerging technique of photoacoustic imaging,especially in the near infra-red(NIR)window,permits high resolution,deep-penetration,clinically reliable sensing.However,few contrast agents are available that can specifically respond to intricate biological environments,and which are biodegradable and biocompatible.Herein,we in troduce a new class of pH-sensitive orga nic photoacoustic con trast age nt that operates in the second NIR window(NIR-II,960-1,700 nm),which is derived from the self-assembled charge-transfer nanocomplex(CTN)by 3,3',5,5'-tetramethylbenzidine(TMB)and its dication structure(TMB++).The unique NIR-ll-responsive CTN can specifically respond to pH change in the physiological range and allows noninvasive and sensitive visualization of the tumor acidic microenvironment(e.g.at pH5)in mice with higher signal-to-noise ratio.The CTN is biodegradable under physiological conditions(e.g.pH 7.4),which alleviates the biosafety concern of nan oparticle accumulati on in vivo.These results clearly show the pote ntial of the TMB/TMB++-based CTN as a promisi ng pH-activated and biodegradable molecular probe for specific tumor photoacoustic imaging in the NIR-II region.展开更多
Multimodal imaging probes have attracted wide attention and have potential to diagnose diseases accurately because of the complementary advantages of multiple imaging modalities. However, intractable issues remain wit...Multimodal imaging probes have attracted wide attention and have potential to diagnose diseases accurately because of the complementary advantages of multiple imaging modalities. However, intractable issues remain with regard to their complicated multi-step fabrication for hybrid nanostructure and interference of different modal imaging. In the present stud we present, for the first time, T1 and T2-weighted magnetic resonance imaging (MRI) of ultrasmaU Mn2+-doped NaNdF4 nanocrystals (NCs), which can also be used simultaneously for second near infrared (NIR-U) fluorescence and computed tomography (CT) imaging, thus enabling high-performance multimodal MRI/NIR-II/CT imaging of single NaNdF4:Mn NCs. The NaNdF4:Mn was demonstrated as a nanoprobe for in vitro and in vivo multimodal MRI and NIR-II fluorescence imaging of human mesenchymal stem cells. The results provide a new strategy to simplify the nanostructure and preparation of probes, based on the features of NaNdF4:Mn NCs, which offer highly efficient multimodal MRI/NIR-II/CT imaging.展开更多
Cr^(3+)-activated near-infrared(NIR)phosphors are key for NIR phosphor-converted light emitting diodes(NIR pc-LED).While,the site occupancy of Cr^(3+)is one of the debates that have plagued researchers.Herein,Y2Mg2Al2...Cr^(3+)-activated near-infrared(NIR)phosphors are key for NIR phosphor-converted light emitting diodes(NIR pc-LED).While,the site occupancy of Cr^(3+)is one of the debates that have plagued researchers.Herein,Y2Mg2Al2-Si_(2)O1_(2)(YMAS)with multiple cationic sites is chosen as host of Cr^(3+)to synthesize YMAS:xCr^(3+)phosphors.In YMAS,Cr^(3+)ions occupy simultaneously Al/SiO4 tetrahedral,Mg/AlO6 octahedral,and Y/MgO8 dodecahedral sites which form three luminescent centers named as Cr1,Cr2,and Cr3,respectively.Cr1 and Cr2 relate to an intermediate crystal field,with transitions of^(2)E→^(4)A_(2)and^(4)T_(2)→^(4)A_(2)occurring simultaneously.As Cr^(3+)concentration increases,the^(4)T_(2)→^(4)A_(2)transition becomes more pronounced in Cr1 and Cr2,resulting in a red-shift and broadband emission.Cr3 consistently behaves a weak crystal field and exhibits the broad and long-wavelength emission.Wide-range NIR emission centering at 745 nm is realized in YMAS:0.03Cr^(3+)phosphor.This phosphor has high internal quantum efficiency(IQE?86%)and satisfying luminescence thermal stability(I423 K?70.2%).Using this phosphor,NIR pc-LEDs with 56.6 mW@320 mA optical output power is packaged and applied.Present study not only demonstrates the Cr^(3+)multi-site occupancy in a certain oxide but also provides a reliable approach via choosing a host with diverse cationic sites and local environments for Cr^(3+)to achieve broadband NIR phosphors.展开更多
Oil content is a crucial indicator for evaluating the quality of peanuts.A rapid and non-destructive method to determine oil content of individual peanut seed can provide robust technical support for breeding high-oil...Oil content is a crucial indicator for evaluating the quality of peanuts.A rapid and non-destructive method to determine oil content of individual peanut seed can provide robust technical support for breeding high-oil-content peanut varieties.In this study,we established a rapid determination method using near-infrared hyperspectral imaging and chemometrics to assess the oil content of single peanut seed.After selecting key wavelengths through competitive adaptive reweighted sampling(CARS),uninformative variable elimination(UVE),and random frog(RF),we constructed an oil content calibration model based on partial least squares regression for single peanut seed.Validation results demonstrated that the correlation coefficient was 0.8393 with a root mean square error of 1.7771 in the calibration set,while it was 0.7915 with a root mean square error of 2.2943 in the independent prediction set.Most samples exhibited relative errors below 5%,confirming the reliability of this model in predicting oil content of single peanut seed.展开更多
This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three tempo...This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.展开更多
BACKGROUND Near-infrared fluorescence imaging via using intravenous indocyanine green(ICG)has a wide range of applications in multiple surgical scenarios.In lapa-roscopic cholecystectomy(LC),it facilitates intraoperat...BACKGROUND Near-infrared fluorescence imaging via using intravenous indocyanine green(ICG)has a wide range of applications in multiple surgical scenarios.In lapa-roscopic cholecystectomy(LC),it facilitates intraoperative identification of the biliary system and reduces the risk of bile duct injury.However,the usual single color fluorescence imaging(SCFI)has limitations in manifesting the fluorescence signal of the target structure when its intensity is relatively low.Moreover,sur-geons often experience visual fatigue.We hypothesized that a novel imaging stra-tegy,named multi-color fluorescence imaging(MCFI),could potentially address these issues by decreasing hepatic and background fluorescence pollution and improving biliary visualization.AIM To investigate the novel imaging strategy MCFI in LC.METHODS This was a single-center retrospective study conducted at Peking Union Medical College Hospital,Beijing,China.Patients who underwent LC from June 2022 to March 2023 by the same surgical team were enrolled.Demographic features,clinical and surgical information were collected.The clarity,visual comfort,and effectiveness of different imaging strategies were subjectively evaluated by surgeons.RESULTS A total of 155 patients were included,60 patients were in the non-ICG group in which only bright light illuminance without ICG was applied,60 patients were in the SCFI group,and 35 patients were in the MCFI group.No statist-ically significant differences were found in demographics or clinical history.Post-surgical complications were minimal in all 3 groups with no significant differences observed.MCFI improved the clarity of imaging and visual comfort.Clarity of imaging and visual comfort were improved with MCFI.CONCLUSION MCFI improves biliary visualization and reduces liver fluorescence contamination,which supports its routine use in LC.MCFI may also be a better choice than SCFI in other clinical settings.展开更多
Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection...Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection(LOD)is rather challenging.In this work,we report the synthesis of water-dispersible erbium-hyperdoped silicon quantum dots(Si QDs:Er),which emit NIR light at the wavelengths of 810 and 1540 nm.A dual-emission NIR nanosensor based on water-dispersible Si QDs:Er enables ratiometric Fe^(3+)detection with a very low LOD(0.06μM).The effects of pH,recyclability,and the interplay between static and dynamic quenching mechanisms for Fe^(3+)detection have been systematically studied.In addition,we demonstrate that the nanosensor may be used to construct a sequential logic circuit with memory functions.展开更多
文摘Background:Fluorescence bio-imaging in the second near-infrared window(NIR-II FL,1000-1700nm)has great potential in clinical theranostics,which is of great importance providing precise locations of lesions and molecular dynamic actions simultaneously in a single nanoprobe.Methods:T here has been an upsurge of multidisciplinary research focusing on developing functional types of inorganic and organic nanoprobes that can be used for NIR-II FL with the high spatiotemporal resolution,deep tissue penetration,and negligible auto-fluorescence.Results:In this mini-review,we summarize recent progress in inorganic/organic NIR-II FL nanoprobes.We introduce the design and properties of inorganic and organic nanoprobes,in the order of single-walled carbon nanotubes,quantum dots,rare-earth-doped nanoparticles,metal nanoclusters and organic fluorophores,expect to realize precise diagnosis and efficient image-guided therapy.Conclusion:Meanwhile,to elucidate the problems and perspectives,we aim to offer diverse biological applications of inorganic/organic NIR-II FL nanoprobes and accelerate the clinical transformation progress.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB922402)the National Key Scientific Instruments Development Program of China(Grant No.2012YQ120047)+1 种基金the National Natural Science Foundation of China(Grant Nos.61205130 and 11174361)the Key Deployment Project of Chinese Academy of Sciences(Grant No.KJZD-EW-L11-03)
文摘We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation (SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. The home-made Yb:LYSO oscillator centered at 1035 nm delivers an average power of 2 W and a pulse duration as short as 351 fs. TWo MgO doped periodically poled lithium niobates (MgO:PPLN) with grating periods of 28.5-31.5 μm in steps of 0.5 μm and 19.5-21.3μm in steps of 0.2 μm are used for the OPO and intracavity SHG, respectively. The maximum average output power of 180 mW at 798 nm was obtained and the output pulses have pulse duration of 313 fs at 792 nm if a sech2-pulse shape was assumed. In addition, tunable signal femtosecond pulses from 1428 nm to 1763 nm are also realized with the maximum average power of 355 mW at 1628 nm.
基金National Natural Science Foundation of China,Grant/Award Numbers:523731405217312951973092,52103157China Postdoctoral Science Foundation,Grant/Award Numbers:2022M711544,2023T160301。
文摘Creation of new fluorophores is important for understanding the structure-property relationship,by which the required optical properties are likely to be attained.Herein,through theory calculation,it is found that furan-modified thiadiazolo quinoxaline acting as an electron acceptor can endow donor-acceptor-donor(D-A-D)type second near-infrared(NIR-Ⅱ)fluorophores with longer emission wavelength than the other thiadiazolo quinoxaline-based acceptors containing pyridine,pyrrole,thiophene,and phenyl groups,respectively.On the basis of this theoretical prediction,a D-A-D type NIR-Ⅱ fluorophore with 6,7-di(furan-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline(DFTQ)as the acceptor and dithieno[3,2-b:2′,3′-d]pyrrole(DTP)as the donor is designed and synthesized,and the aggregation-induced emission(AIE)function is further achieved by introducing the AIE units of tetraphenylethylene(TPE)and triphenylamine(TPA),respectively,totally forming three NIR-Ⅱ fluorophores DFTQ-DTP,DFTQ-DTPE,and DFTQ-DTPA.For biological applications,the fluorophores are encapsulated by amphiphilic DSPE-PEG2000 to generate water-dispersible nanoparticles(NPs).Almost the whole emission of each of the NPs falls into the NIR-Ⅱ spectral range,with part emission beyond 1300 nm.By using DFTQ-DTPA NPs as the contrast and photothermal therapy(PTT)agent,high-resolution in vivo fluorescence imaging is achieved in the greater than 1300 nm window,and their good performance in photoacoustic imaging and high tumor PTT efficacy in tumor-bearing mice are also demonstrated.Taken together,this work mainly provides a strong electron acceptor for constructing longemitting fluorophores,and by using the electron acceptor,a AIE fluorophore with desirable quantum yield(QY)and photothermal conversion efficienciy(PCE)is synthesized and demonstrated to be promising in fluorescence/photoacoustic imaging and PTT.
文摘In this editorial,we comment on the recent article by Fei et al exploring the field of near-infrared spectroscopy(NIRS)research in schizophrenia from a bibliometrics perspective.In recent years,NIRS has shown unique advantages in the auxiliary diagnosis of schizophrenia,and the introduction of bibliometrics has provided a macro perspective for research in this field.Despite the opportunities brought about by these technological developments,remaining challenges require multidi-sciplinary approach to devise a reliable and accurate diagnosis system for schizo-phrenia.Nonetheless,NIRS-assisted technology is expected to contribute to the division of methods for early intervention and treatment of schizophrenia.
文摘BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patients with MCI is unclear.AIM To explore the near-infrared brain function characteristics of MCI with sleep disorders.METHODS A total of 120 patients with MCI(MCI group)and 50 healthy subjects(control group)were selected.All subjects underwent the functional near-infrared spec-troscopy test.Collect baseline data,Mini-Mental State Examination,Montreal Cognitive Assessment scale,fatigue severity scale(FSS)score,sleep parameter,and oxyhemoglobin(Oxy-Hb)concentration and peak time of functional near-infrared spectroscopy test during the task period.The relationship between Oxy-RESULTS Compared with the control group,the FSS score of the MCI group was higher(t=11.310),and the scores of Pittsburgh sleep quality index,sleep time,sleep efficiency,nocturnal sleep disturbance,and daytime dysfunction were higher(Z=-10.518,-10.368,-9.035,-10.661,-10.088).Subjective sleep quality and total sleep time scores were lower(Z=-11.592,-9.924).The sleep efficiency of the MCI group was lower,and the awakening frequency,rem sleep latency period,total sleep time,and oxygen desaturation index were higher(t=5.969,5.829,2.887,3.003,5.937).The Oxy-Hb concentration at T0,T1,and T2 in the MCI group was lower(t=14.940,11.280,5.721),and the peak time was higher(t=18.800,13.350,9.827).In MCI patients,the concentration of Oxy-Hb during T0 was negatively correlated with the scores of Pittsburgh sleep quality index,sleep time,total sleep time,and sleep efficiency(r=-0.611,-0.388,-0.563,-0.356).It was positively correlated with sleep efficiency and total sleep time(r=0.754,0.650),and negatively correlated with oxygen desaturation index(r=-0.561)and FSS score(r=-0.526).All comparisons were P<0.05.CONCLUSION Patients with MCI and sleep disorders have lower near-infrared brain function than normal people,which is related to sleep quality.Clinically,a comprehensive assessment of the near-infrared brain function of patients should be carried out to guide targeted treatment and improve curative effect.
基金supported by the National Basic Research Foundation of China(no.2017YFA0505202)financial support from the National Natural Science Foundation of China(nos.21676113 and 21772054)+6 种基金the Distinguished Young Scholar of Hubei Province(no.2018CFA079)the 111 Project B17019the Scholar Support Program of CCNU(no.0900-31101090002)financial support from A*STAR under its Advanced Manufacturing and Engineering Program(no.A2083c0051)the Ministry of Education,Singapore(no.MOE-MOET2EP10120-0007)supported by grants from the 619 National Creative Research Initiative programs of the 620 National Research Foundation of Koreafunded by 621 the Korean government(no.2021R1A6A1A10039823).
文摘Heptamethine cyanine dyes,typified by indocyanine green,have been extensively employed as bioimaging indicators and theranostic agents.Significant efforts have been made to develop functional heptamethine cyanine dyes with outstanding bioimaging and theranostic utilities.In this work,we rationally designed and successfully developed a novel indolium-like heptamethine cyanine dye by installing indolium-derived polycyclic aromatic hydrocarbons on the terminal ends of a conjugated polyene backbone.This dye showed excellent photostability and showed bright fluorescent emission in the second near-infrared(NIR-Ⅱ)window with a peak at approximately 1120 nm.Such long wavelength emission prompted a superior bioimaging resolution in vivo.In particular,this NIR-Ⅱ dye had the remarkable capability of marking the blood vessels of the hindlimbs,abdomens,and brains of mice.More significantly,this dye involved a typical indolium-like heptamethine skeleton and exhibited two strong absorption bands in the 700–1300 nm NIR range,which endowed it with an intrinsic tumor-targeting capability and a high photothermal conversion efficiency(up to 68.2%),serving for the photothermal therapy of tumors under the guidance of NIR-Ⅱ fluorescence imaging.This work provides an efficient design strategy for achieving indolium-like heptamethine cyanine dyes with further NIR-Ⅱ emission.
基金This work was supported by the National Natural Science Foundation of China(grant nos.22005211 and 52121002).Prof.Yonghao Zheng is acknowledged for his help on the analysis of VT-EPR results.
文摘Organic dyes with strong absorption in the second near-infrared(NIR-II)window(1000-1700 nm)have multiple applications.However,the design and synthesis of stable NIR-II absorbing organic dyes are very challenging and constantly defy our synthetic ability.In this work,we have successfully synthesized a series of soluble and stable fused thienoisoindigo(nThIID)ribbons.The absorption maximum(λ_(max))of the ribbons increases from 644 nm of 1ThIID to 1252 nm of 6ThIID.Importantly,nThIIDs with n≥4 all display strong absorption in the NIR-II window with molar extinction coefficients(ε_(max))greater than 105 L mol^(−1)cm^(−1)atλmax.These molecules are promising photothermal conversion dyes with photothermal conversion efficiencies of ca.60%under 1064 nm laser irradiation.
基金from the National Natural Science Foundation of China(grant no.21825503).
文摘Photothermal therapy(PTT)triggered by second near-infrared(NIR-II)light(1000–1400 nm)has shown great potential in tumor ablation because of its good tissue penetrability.However,NIR-II PTT still cannot treat tumors underneath skin because of the light scattering effect of skin components.This research aims to promote the NIR-II penetrability of skin tissue by weakening the light scattering effect from the refractive index inhomogeneity among skin constituents.
基金This work was financially supported by the National Natural Science Foundation of China(No.81901885)the Science and Technology Commission of Shanghai Municipality(Nos.17JC1400700,18JC1415500,and 1952710400)+1 种基金the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission(No.16SG54)the Cultivating Fund of Frontiers Science Center for Transformative Molecules(No.2019PT02).
文摘Second near-infrared(NIR-II)fluorescence imaging is a recently emerged technique and is highly useful for accurate diagnosis of cancer.Although a diverse array of fluorescent nanomaterials have been developed to enable NIR-II fluorescence in various situations,they normally fail to unify the clinical techniques,such as computed tomography(CT)and magnetic resonance imaging(MRI).Therefore,exploiting multimodal agents to integrate the newly emerged NIR-II fluorescence and traditional clinical techniques would be of key significance.Here,we report a rational fabrication of neodymium(Nd)-doped gadolinium tungstate nanoparticles(NPs)that are subsequentially decorated with a hydrophilic layer and demonstrate that they can achieve the harmonious integration of NIR-II fluorescence imaging,CT,and MRI.The NIR-II fluorescence emission was activated by an incident light with discrete wavelength ranging from 250 to 810 nm.NIR-II fluorescence-CT-MRI associated trimodal imaging was subsequently demonstrated for breast cancer by an 808 nm laser,along with the estimation of NIR-II fluorescence imaging for cervical cancer.The integration of newly emerged and traditional clinical imaging techniques highlights the huge potential of rare-earth-doped NPs for multimodal imaging of different types of cancer.
文摘Optical imaging in the second near-infrared(NIR-II,1,000-1,700 nm)window with much reduced tissue scattering plays a crucial role in life sciences due to its high sensitivity and high spatio-temporal resolutions^([1]).Therefore,researchers are committed to developing various types of NIR-II fluorescent probes,such as organic dyes.
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
文摘Fluorescence imaging is capable of acquiring anatomical and functional infor- mation with high spatial and temporal resolution. This imaging technique has been indispensable in biological research and disease detection/diagnosis. Imaging in the visible and to a lesser degree, in the near-infrared (NIR) regions below 900 nm, suffers from autofluorescence arising from endogenous fluorescent molecules in biological tissues. This autofluorescence interferes with fluorescent molecules of interest, causing a high background and low detection sensitivity. Here, we report that fluorescence imaging in the 1,500-1,700-nm region (termed "NIR-IIb") under 808-nm excitation results in nearly zero tissue autofluorescence, allowing for background-free imaging of fluorescent species in otherwise notoriously autofluorescent biological tissues, including liver. Imaging of the intrinsic fluorescence of individual fluorophores, such as a single carbon nanotube, can be readily achieved with high sensitivity and without autofluorescence background in mouse liver within the 1,500-1,700-nm wavelength region.
基金Supported by The Southwest Medical University Student Innovation and Entrepreneurship Project Fund,No.202310632045 and No.202310632059。
文摘BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and providing direct and objective assessment information.AIM To explore the research field of NIRS in schizophrenia from the perspective of bibliometrics.METHODS The Web of Science Core Collection was used as the search tool,and the last search date was April 21,2024.Bibliometric indicators,such as the numbers of publications and citations,were recorded.Bibliometrix and VOS viewer were used for visualization analysis.RESULTS A total of 355 articles from 105 journals were included in the analysis.The overall trend of the number of research publications increased.Schizophrenia Research was identified as an influential journal in the field.Kasai K was one of the most influential and productive authors in this area of research.The University of Tokyo and Japan had the highest scientific output for an institution and a country,respectively.The top ten keywords were“schizophrenia”,“activation”,“near-infrared spectroscopy”,“verbal fluency task”,“cortex”,“brain,performance”,“workingmemory”,“brain activation”,and“prefrontal cortex”.CONCLUSION Our study reveals the evolution of knowledge and emerging trends in the field of NIRS in schizophrenia.the research focus is shifting from underlying disease characteristics to more in-depth studies of brain function and physiological mechanisms.
基金the financial supports from NTU-AIT-MUV NAM/16001,RG110/16(S),(RG 11/13)and(RG 35/15)awarded in Nanyang Technological University and the National Natural Science Foundation of China(NSFC)(No.51628201).
文摘The emerging technique of photoacoustic imaging,especially in the near infra-red(NIR)window,permits high resolution,deep-penetration,clinically reliable sensing.However,few contrast agents are available that can specifically respond to intricate biological environments,and which are biodegradable and biocompatible.Herein,we in troduce a new class of pH-sensitive orga nic photoacoustic con trast age nt that operates in the second NIR window(NIR-II,960-1,700 nm),which is derived from the self-assembled charge-transfer nanocomplex(CTN)by 3,3',5,5'-tetramethylbenzidine(TMB)and its dication structure(TMB++).The unique NIR-ll-responsive CTN can specifically respond to pH change in the physiological range and allows noninvasive and sensitive visualization of the tumor acidic microenvironment(e.g.at pH5)in mice with higher signal-to-noise ratio.The CTN is biodegradable under physiological conditions(e.g.pH 7.4),which alleviates the biosafety concern of nan oparticle accumulati on in vivo.These results clearly show the pote ntial of the TMB/TMB++-based CTN as a promisi ng pH-activated and biodegradable molecular probe for specific tumor photoacoustic imaging in the NIR-II region.
文摘Multimodal imaging probes have attracted wide attention and have potential to diagnose diseases accurately because of the complementary advantages of multiple imaging modalities. However, intractable issues remain with regard to their complicated multi-step fabrication for hybrid nanostructure and interference of different modal imaging. In the present stud we present, for the first time, T1 and T2-weighted magnetic resonance imaging (MRI) of ultrasmaU Mn2+-doped NaNdF4 nanocrystals (NCs), which can also be used simultaneously for second near infrared (NIR-U) fluorescence and computed tomography (CT) imaging, thus enabling high-performance multimodal MRI/NIR-II/CT imaging of single NaNdF4:Mn NCs. The NaNdF4:Mn was demonstrated as a nanoprobe for in vitro and in vivo multimodal MRI and NIR-II fluorescence imaging of human mesenchymal stem cells. The results provide a new strategy to simplify the nanostructure and preparation of probes, based on the features of NaNdF4:Mn NCs, which offer highly efficient multimodal MRI/NIR-II/CT imaging.
基金supported by the National Natural Science Foundation of China(No.51772330)the Fundamental Research Funds for the Central Universities of Central South University(No.506021713)the National MCF Energy R&D Program of China(No.2018YFE0306100).
文摘Cr^(3+)-activated near-infrared(NIR)phosphors are key for NIR phosphor-converted light emitting diodes(NIR pc-LED).While,the site occupancy of Cr^(3+)is one of the debates that have plagued researchers.Herein,Y2Mg2Al2-Si_(2)O1_(2)(YMAS)with multiple cationic sites is chosen as host of Cr^(3+)to synthesize YMAS:xCr^(3+)phosphors.In YMAS,Cr^(3+)ions occupy simultaneously Al/SiO4 tetrahedral,Mg/AlO6 octahedral,and Y/MgO8 dodecahedral sites which form three luminescent centers named as Cr1,Cr2,and Cr3,respectively.Cr1 and Cr2 relate to an intermediate crystal field,with transitions of^(2)E→^(4)A_(2)and^(4)T_(2)→^(4)A_(2)occurring simultaneously.As Cr^(3+)concentration increases,the^(4)T_(2)→^(4)A_(2)transition becomes more pronounced in Cr1 and Cr2,resulting in a red-shift and broadband emission.Cr3 consistently behaves a weak crystal field and exhibits the broad and long-wavelength emission.Wide-range NIR emission centering at 745 nm is realized in YMAS:0.03Cr^(3+)phosphor.This phosphor has high internal quantum efficiency(IQE?86%)and satisfying luminescence thermal stability(I423 K?70.2%).Using this phosphor,NIR pc-LEDs with 56.6 mW@320 mA optical output power is packaged and applied.Present study not only demonstrates the Cr^(3+)multi-site occupancy in a certain oxide but also provides a reliable approach via choosing a host with diverse cationic sites and local environments for Cr^(3+)to achieve broadband NIR phosphors.
基金supported by the National Key Research and Development Project of China(2021YFD1600101)the earmarked fund for the China Agriculture Research System(CARS-12 and CARS-13)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2024-OCRI).
文摘Oil content is a crucial indicator for evaluating the quality of peanuts.A rapid and non-destructive method to determine oil content of individual peanut seed can provide robust technical support for breeding high-oil-content peanut varieties.In this study,we established a rapid determination method using near-infrared hyperspectral imaging and chemometrics to assess the oil content of single peanut seed.After selecting key wavelengths through competitive adaptive reweighted sampling(CARS),uninformative variable elimination(UVE),and random frog(RF),we constructed an oil content calibration model based on partial least squares regression for single peanut seed.Validation results demonstrated that the correlation coefficient was 0.8393 with a root mean square error of 1.7771 in the calibration set,while it was 0.7915 with a root mean square error of 2.2943 in the independent prediction set.Most samples exhibited relative errors below 5%,confirming the reliability of this model in predicting oil content of single peanut seed.
文摘This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.
基金Supported by the National High Level Hospital Clinical Research Funding,No.2022-PUMCH-B-003Beijing Technology Innovation Foundation for University or College Students,No.2022zglc06062.
文摘BACKGROUND Near-infrared fluorescence imaging via using intravenous indocyanine green(ICG)has a wide range of applications in multiple surgical scenarios.In lapa-roscopic cholecystectomy(LC),it facilitates intraoperative identification of the biliary system and reduces the risk of bile duct injury.However,the usual single color fluorescence imaging(SCFI)has limitations in manifesting the fluorescence signal of the target structure when its intensity is relatively low.Moreover,sur-geons often experience visual fatigue.We hypothesized that a novel imaging stra-tegy,named multi-color fluorescence imaging(MCFI),could potentially address these issues by decreasing hepatic and background fluorescence pollution and improving biliary visualization.AIM To investigate the novel imaging strategy MCFI in LC.METHODS This was a single-center retrospective study conducted at Peking Union Medical College Hospital,Beijing,China.Patients who underwent LC from June 2022 to March 2023 by the same surgical team were enrolled.Demographic features,clinical and surgical information were collected.The clarity,visual comfort,and effectiveness of different imaging strategies were subjectively evaluated by surgeons.RESULTS A total of 155 patients were included,60 patients were in the non-ICG group in which only bright light illuminance without ICG was applied,60 patients were in the SCFI group,and 35 patients were in the MCFI group.No statist-ically significant differences were found in demographics or clinical history.Post-surgical complications were minimal in all 3 groups with no significant differences observed.MCFI improved the clarity of imaging and visual comfort.Clarity of imaging and visual comfort were improved with MCFI.CONCLUSION MCFI improves biliary visualization and reduces liver fluorescence contamination,which supports its routine use in LC.MCFI may also be a better choice than SCFI in other clinical settings.
基金supported by the National Natural Science Foundation of China(U22A2075,U20A20209)the Fundamental Research Funds for the Central Universities(226-2022-00200)the Qianjiang Distinguished Experts program of Hangzhou.
文摘Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection(LOD)is rather challenging.In this work,we report the synthesis of water-dispersible erbium-hyperdoped silicon quantum dots(Si QDs:Er),which emit NIR light at the wavelengths of 810 and 1540 nm.A dual-emission NIR nanosensor based on water-dispersible Si QDs:Er enables ratiometric Fe^(3+)detection with a very low LOD(0.06μM).The effects of pH,recyclability,and the interplay between static and dynamic quenching mechanisms for Fe^(3+)detection have been systematically studied.In addition,we demonstrate that the nanosensor may be used to construct a sequential logic circuit with memory functions.