Current methods of order tracking, such as synchronous resampling, Gabor filtering, and Vold-Kalman filtering have undesirable traits. Each method has two or more of the following deficiencies: requires measurement or...Current methods of order tracking, such as synchronous resampling, Gabor filtering, and Vold-Kalman filtering have undesirable traits. Each method has two or more of the following deficiencies: requires measurement or estimate of rotational speed over time, failure to isolate the contribution of crossing orders in the vicinity of the crossing time, large computational expense, end effects. In this work a new approach to the order tracking problem is taken. The Second Order Blind Identification (SOBI) algorithm is applied to synthesized data. The technique is shown to be very successful at isolating crossing orders and circumvents all of the above deficiencies. The method has its own restric-tions: multiple sensors are required and sensors must be mounted on a structure that responds quasi-statically to exci-tation of the rotational system.展开更多
We present an adaptive algorithm for blind identification and equalization of single-input multiple-output (SIMO) FIR channels with second-order statistics. We first reformulate the blind channel identification prob...We present an adaptive algorithm for blind identification and equalization of single-input multiple-output (SIMO) FIR channels with second-order statistics. We first reformulate the blind channel identification problem into a low-rank matrix approximation solution based on the QR decomposition of the received data matrix. Then, a fast recursive algorithm is developed based on the bi-iterative least squares (Bi-LS) subspace tracking method. The new algorithm requires only a computational complexity of O(md2) at each iteration, or even as low as O(md) if only equalization is necessary, where m is the dimension of the received data vector (or the row rank of channel matrix) and d is the dimension of the signal subspace (or the column rank of channel matrix). To overcome the shortcoming of the back substitution, an inverse QR iteration algorithm for subspace tracking and channel equalization is also developed. The inverse QR iteration algorithm is well suited for the parallel implementation in the systolic array. Simulation results are presented to illustrate the effectiveness of the proposed algorithms for the channel identification and equalization.展开更多
The problem of blind adaptive equalization of underwater single-input multiple-output (SIMO) acoustic channels was analyzed by using the linear prediction method.Minimum mean square error (MMSE) blind equalizers with ...The problem of blind adaptive equalization of underwater single-input multiple-output (SIMO) acoustic channels was analyzed by using the linear prediction method.Minimum mean square error (MMSE) blind equalizers with arbitrary delay were described on a basis of channel identification.Two methods for calculating linear MMSE equalizers were proposed.One was based on full channel identification and realized using RLS adaptive algorithms,and the other was based on the zero-delay MMSE equalizer and realized using LMS and RLS adaptive algorithms,respectively.Performance of the three proposed algorithms and comparison with two existing zero-forcing (ZF) equalization algorithms were investigated by simulations utilizing two underwater acoustic channels.The results show that the proposed algorithms are robust enough to channel order mismatch.They have almost the same performance as the corresponding ZF algorithms under a high signal-to-noise (SNR) ratio and better performance under a low SNR.展开更多
In this paper, a novel approach is put forward to the multiuser channelidentification. The approach makes use of the modulation-induced Cyclostationarity to separate thesecond order cyclic statistics for every user, w...In this paper, a novel approach is put forward to the multiuser channelidentification. The approach makes use of the modulation-induced Cyclostationarity to separate thesecond order cyclic statistics for every user, with the special features of one subspace for oneuser, so as to be able to identify individual channels of different users. In order to form aSingle-Input-Two-Output (SITO) system, the transmission rate is doubled by repeating at thetransmitters. The approach is rather simple, suitable for the multiuser uplink . And the channelidentifiability conditions with its proof are included in the paper, And finally the identificationalgorithm is proposed with simulation results.展开更多
文摘Current methods of order tracking, such as synchronous resampling, Gabor filtering, and Vold-Kalman filtering have undesirable traits. Each method has two or more of the following deficiencies: requires measurement or estimate of rotational speed over time, failure to isolate the contribution of crossing orders in the vicinity of the crossing time, large computational expense, end effects. In this work a new approach to the order tracking problem is taken. The Second Order Blind Identification (SOBI) algorithm is applied to synthesized data. The technique is shown to be very successful at isolating crossing orders and circumvents all of the above deficiencies. The method has its own restric-tions: multiple sensors are required and sensors must be mounted on a structure that responds quasi-statically to exci-tation of the rotational system.
基金Supported by the National Basic Research Program of China (Grant No. 2008CB317109)the National Natural Science Foundation of China(Grant No. 60572054)+1 种基金the Foundation of Authors of National Excellent Doctoral Dissertation (Grant No. 200239)the Scientific Research Foundation for Returned Scholars, Ministry of Education of China
文摘We present an adaptive algorithm for blind identification and equalization of single-input multiple-output (SIMO) FIR channels with second-order statistics. We first reformulate the blind channel identification problem into a low-rank matrix approximation solution based on the QR decomposition of the received data matrix. Then, a fast recursive algorithm is developed based on the bi-iterative least squares (Bi-LS) subspace tracking method. The new algorithm requires only a computational complexity of O(md2) at each iteration, or even as low as O(md) if only equalization is necessary, where m is the dimension of the received data vector (or the row rank of channel matrix) and d is the dimension of the signal subspace (or the column rank of channel matrix). To overcome the shortcoming of the back substitution, an inverse QR iteration algorithm for subspace tracking and channel equalization is also developed. The inverse QR iteration algorithm is well suited for the parallel implementation in the systolic array. Simulation results are presented to illustrate the effectiveness of the proposed algorithms for the channel identification and equalization.
基金Supported by the National Natural Science Foundation of China under Grant No.60372086the Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No.200753
文摘The problem of blind adaptive equalization of underwater single-input multiple-output (SIMO) acoustic channels was analyzed by using the linear prediction method.Minimum mean square error (MMSE) blind equalizers with arbitrary delay were described on a basis of channel identification.Two methods for calculating linear MMSE equalizers were proposed.One was based on full channel identification and realized using RLS adaptive algorithms,and the other was based on the zero-delay MMSE equalizer and realized using LMS and RLS adaptive algorithms,respectively.Performance of the three proposed algorithms and comparison with two existing zero-forcing (ZF) equalization algorithms were investigated by simulations utilizing two underwater acoustic channels.The results show that the proposed algorithms are robust enough to channel order mismatch.They have almost the same performance as the corresponding ZF algorithms under a high signal-to-noise (SNR) ratio and better performance under a low SNR.
文摘In this paper, a novel approach is put forward to the multiuser channelidentification. The approach makes use of the modulation-induced Cyclostationarity to separate thesecond order cyclic statistics for every user, with the special features of one subspace for oneuser, so as to be able to identify individual channels of different users. In order to form aSingle-Input-Two-Output (SITO) system, the transmission rate is doubled by repeating at thetransmitters. The approach is rather simple, suitable for the multiuser uplink . And the channelidentifiability conditions with its proof are included in the paper, And finally the identificationalgorithm is proposed with simulation results.