In this paper, we study the existence of positive periodic solutions for singular second order equations x" + n2/4+h(x) = p(t), where h has a singularity at the origin and n is a positive integer. We give an e...In this paper, we study the existence of positive periodic solutions for singular second order equations x" + n2/4+h(x) = p(t), where h has a singularity at the origin and n is a positive integer. We give an explicit condition to ensure the existence of positive periodic solutions when h is an unbounded perturbation at infinity by using qualitative analysis and topological dezree theory.展开更多
The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, wher...The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, where A is a closed operator on Banach space X. The case that the problem is ill-posed is treated, and two subspaces Y(A, k) and H(A, ω) are introduced. Y(A, k) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v( t, x) such that ess sup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞. H(A, ω) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v(t,x)such that ess sup{e^-ωl|d/(dt)〈v(t,x),x^*)|:t≥0,x^*∈X^*,‖x^*‖≤1}〈+∞. The following conclusions are proved that Y(A, k) and H(A, ω) are Banach spaces, and both are continuously embedded in X; the restriction operator A | Y(A,k) generates a once-integrated cosine operator family { C(t) }t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,arbitary t≥0; the restriction operator A |H(A,ω) generates a once- integrated cosine operator family {C(t)}t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,arbitary t≥0.展开更多
Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 ...Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.展开更多
A new criterion is established for the oscillation of second order superlinear ordinary differential equations of the formx″(t) + p(t)x′(t) + q(t)|x(t)|αsgnx(t) = 0, t ≥ t0,where α>1,p and q are continuous f...A new criterion is established for the oscillation of second order superlinear ordinary differential equations of the formx″(t) + p(t)x′(t) + q(t)|x(t)|αsgnx(t) = 0, t ≥ t0,where α>1,p and q are continuous functions on[t0,∞). This criterion extends and unifies some of the results obtained in [1]- [5].展开更多
In this paper we introduce the class of Hermite's matrix polynomials which appear as finite series solutions of second order matrix differential equations Y'-xAY'+BY=0.An explicit expression for the Hermit...In this paper we introduce the class of Hermite's matrix polynomials which appear as finite series solutions of second order matrix differential equations Y'-xAY'+BY=0.An explicit expression for the Hermite matrix polynomials,the orthogonality property and a Rodrigues' formula are given.展开更多
Wavelength-dependent mathematical modelling of the differential energy change of a photon has been performed inside a proposed hypothetical optical medium.The existence of this medium demands certain mathematical cons...Wavelength-dependent mathematical modelling of the differential energy change of a photon has been performed inside a proposed hypothetical optical medium.The existence of this medium demands certain mathematical constraints,which have been derived in detail.Using reverse modelling,a medium satisfying the derived conditions is proven to store energy as the photon propagates from the entry to exit point.A single photon with a given intensity is considered in the analysis and hypothesized to possess a definite non-zero probability of maintaining its energy and velocity functions analytic inside the proposed optical medium,despite scattering,absorption,fluorescence,heat generation,and other nonlinear mechanisms.The energy and velocity functions are thus singly and doubly differentiable with respect to wavelength.The solution of the resulting second-order differential equation in two variables proves that energy storage or energy flotation occurs inside a medium with a refractive index satisfying the described mathematical constraints.The minimum-value-normalized refractive index profiles of the modelled optical medium for transformed wavelengths both inside the medium and for vacuum have been derived.Mathematical proofs,design equations,and detailed numerical analyses are presented in the paper.展开更多
By the generalized Riccati transformation and the integral averaging technique, some sufficient conditions of oscillation of the solutions for second order nonlinear differential equations with damping were discussed....By the generalized Riccati transformation and the integral averaging technique, some sufficient conditions of oscillation of the solutions for second order nonlinear differential equations with damping were discussed.Some sufficient oscillation criteria for previous equations were built up.Some oscillation criteria have been expanded and strengthened in some other known results.展开更多
Solving the famous Hermite, Legendre, Laguerre and Chebyshev equations requires different techniques of unique character for each equation. By reducing these differential equations of second order to a common solvable...Solving the famous Hermite, Legendre, Laguerre and Chebyshev equations requires different techniques of unique character for each equation. By reducing these differential equations of second order to a common solvable differential equation of first order, a simple common solution is provided to cover all the existing standard solutions of these named equations. It is easier than the method of generating functions and more powerful than the Probenius method of power series.展开更多
We obtain a priori estimates and solvability in Hardy type space in a bounded domain of Rn for second order elliptic equations with coefficients of limited smoothness. Such a result can be served as an endpoint case o...We obtain a priori estimates and solvability in Hardy type space in a bounded domain of Rn for second order elliptic equations with coefficients of limited smoothness. Such a result can be served as an endpoint case of the classical LP(1 〈 p 〈 ∞) theory for second order elliptic equations. Our approach is based on a standard technique of perturbation rather than that of integral representation formula.展开更多
An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
Several oscillation criteria are given for the second order nonlinear differential equation with damped term of the form [α(t)(y'(t))σ]' +p(t)(y'(t))σ+ q(t)f(y(t)) = 0, where α∈C(R, (0,∞)), p(t) and ...Several oscillation criteria are given for the second order nonlinear differential equation with damped term of the form [α(t)(y'(t))σ]' +p(t)(y'(t))σ+ q(t)f(y(t)) = 0, where α∈C(R, (0,∞)), p(t) and q(t) are allowed to change sign on [t0, ∞), and f∈C1 (R, R) such that xf(x) > 0 for x ≠0. Our results improve and extend some known oscillation criteria. Examples are inserted to illustrate our results.展开更多
In this paper we establish Levin type comparison theorems for certain second order differential equations. The results obtained here generalize and extend some of the earlier ones related to the Levin's comparison...In this paper we establish Levin type comparison theorems for certain second order differential equations. The results obtained here generalize and extend some of the earlier ones related to the Levin's comparison theorems.展开更多
On the assumption that the Cauchy problem for incomplete second order abstract differential equation (u″(t)=Au(t), -∞ <t <∞) is well posed and the Cauchy problem for complete second order abstract diff...On the assumption that the Cauchy problem for incomplete second order abstract differential equation (u″(t)=Au(t), -∞ <t <∞) is well posed and the Cauchy problem for complete second order abstract differential equation ( u″(t)+A 1u′(t)+A 0u(t)=0, t≥0 ) is strongly well posed, the necessary conditions for their solutions to be pseudo almost periodic are derived.展开更多
Some new oscillation theorems are established for the second order nonlinear differential equations with damping of the form where p(t) and q(t) are allowed to change sign on [t0,∞).
In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough num...In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.展开更多
Some new oscillation criteria are given for forced second order differential equations with mixed nonlinearities by using the generalized variational principle and Riccati technique. Our results generalize and extend ...Some new oscillation criteria are given for forced second order differential equations with mixed nonlinearities by using the generalized variational principle and Riccati technique. Our results generalize and extend some known oscillation results in the literature.展开更多
In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniform...In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.展开更多
In this paper we study the Oscillatory behaviour of the second order delay differenceequation.(1)△(r<sub>n</sub>△A<sub>n</sub>)+P<sub>n</sub>A<sub>n-k</sub>=0,n=n&...In this paper we study the Oscillatory behaviour of the second order delay differenceequation.(1)△(r<sub>n</sub>△A<sub>n</sub>)+P<sub>n</sub>A<sub>n-k</sub>=0,n=n<sub>0</sub>,n<sub>0</sub>+1……where{P<sub>n</sub>}(?)is a nonnegative Sequenceof real number,(?)is a positive sequence of real number with sum from n=n<sub>0</sub> to +∞(1/r<sub>n</sub>)=+∞,K is a positive integer and △A<sub>n</sub>=A<sub>n+1</sub>-A<sub>n</sub> we prove that each one of following conditions.imples that al solutions of Eq(1)oscillate,where R<sub>n</sub>=sum from i=n<sub>0</sub> to n(1/r<sub>i</sub>展开更多
In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1...In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1= d ψ d z and ψ 2= d 2ψ d z 2 are presented.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11271277)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In this paper, we study the existence of positive periodic solutions for singular second order equations x" + n2/4+h(x) = p(t), where h has a singularity at the origin and n is a positive integer. We give an explicit condition to ensure the existence of positive periodic solutions when h is an unbounded perturbation at infinity by using qualitative analysis and topological dezree theory.
基金The Natural Science Foundation of Department ofEducation of Jiangsu Province (No06KJD110087)
文摘The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, where A is a closed operator on Banach space X. The case that the problem is ill-posed is treated, and two subspaces Y(A, k) and H(A, ω) are introduced. Y(A, k) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v( t, x) such that ess sup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞. H(A, ω) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v(t,x)such that ess sup{e^-ωl|d/(dt)〈v(t,x),x^*)|:t≥0,x^*∈X^*,‖x^*‖≤1}〈+∞. The following conclusions are proved that Y(A, k) and H(A, ω) are Banach spaces, and both are continuously embedded in X; the restriction operator A | Y(A,k) generates a once-integrated cosine operator family { C(t) }t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,arbitary t≥0; the restriction operator A |H(A,ω) generates a once- integrated cosine operator family {C(t)}t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,arbitary t≥0.
基金Supported by the Natural Science Foundation of Hunan Province(06JJ50008) Supported by the Natural Science Foundation of Guangdong Province(7004569)
文摘Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.
文摘A new criterion is established for the oscillation of second order superlinear ordinary differential equations of the formx″(t) + p(t)x′(t) + q(t)|x(t)|αsgnx(t) = 0, t ≥ t0,where α>1,p and q are continuous functions on[t0,∞). This criterion extends and unifies some of the results obtained in [1]- [5].
文摘In this paper we introduce the class of Hermite's matrix polynomials which appear as finite series solutions of second order matrix differential equations Y'-xAY'+BY=0.An explicit expression for the Hermite matrix polynomials,the orthogonality property and a Rodrigues' formula are given.
文摘Wavelength-dependent mathematical modelling of the differential energy change of a photon has been performed inside a proposed hypothetical optical medium.The existence of this medium demands certain mathematical constraints,which have been derived in detail.Using reverse modelling,a medium satisfying the derived conditions is proven to store energy as the photon propagates from the entry to exit point.A single photon with a given intensity is considered in the analysis and hypothesized to possess a definite non-zero probability of maintaining its energy and velocity functions analytic inside the proposed optical medium,despite scattering,absorption,fluorescence,heat generation,and other nonlinear mechanisms.The energy and velocity functions are thus singly and doubly differentiable with respect to wavelength.The solution of the resulting second-order differential equation in two variables proves that energy storage or energy flotation occurs inside a medium with a refractive index satisfying the described mathematical constraints.The minimum-value-normalized refractive index profiles of the modelled optical medium for transformed wavelengths both inside the medium and for vacuum have been derived.Mathematical proofs,design equations,and detailed numerical analyses are presented in the paper.
文摘By the generalized Riccati transformation and the integral averaging technique, some sufficient conditions of oscillation of the solutions for second order nonlinear differential equations with damping were discussed.Some sufficient oscillation criteria for previous equations were built up.Some oscillation criteria have been expanded and strengthened in some other known results.
文摘Solving the famous Hermite, Legendre, Laguerre and Chebyshev equations requires different techniques of unique character for each equation. By reducing these differential equations of second order to a common solvable differential equation of first order, a simple common solution is provided to cover all the existing standard solutions of these named equations. It is easier than the method of generating functions and more powerful than the Probenius method of power series.
基金Supported by NNSF of China Grant No.10571084NNSF of China Grant No.10771097
文摘We obtain a priori estimates and solvability in Hardy type space in a bounded domain of Rn for second order elliptic equations with coefficients of limited smoothness. Such a result can be served as an endpoint case of the classical LP(1 〈 p 〈 ∞) theory for second order elliptic equations. Our approach is based on a standard technique of perturbation rather than that of integral representation formula.
基金the National Natural Sciences Foundation of China
文摘An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
文摘Several oscillation criteria are given for the second order nonlinear differential equation with damped term of the form [α(t)(y'(t))σ]' +p(t)(y'(t))σ+ q(t)f(y(t)) = 0, where α∈C(R, (0,∞)), p(t) and q(t) are allowed to change sign on [t0, ∞), and f∈C1 (R, R) such that xf(x) > 0 for x ≠0. Our results improve and extend some known oscillation criteria. Examples are inserted to illustrate our results.
文摘In this paper we establish Levin type comparison theorems for certain second order differential equations. The results obtained here generalize and extend some of the earlier ones related to the Levin's comparison theorems.
文摘On the assumption that the Cauchy problem for incomplete second order abstract differential equation (u″(t)=Au(t), -∞ <t <∞) is well posed and the Cauchy problem for complete second order abstract differential equation ( u″(t)+A 1u′(t)+A 0u(t)=0, t≥0 ) is strongly well posed, the necessary conditions for their solutions to be pseudo almost periodic are derived.
文摘Some new oscillation theorems are established for the second order nonlinear differential equations with damping of the form where p(t) and q(t) are allowed to change sign on [t0,∞).
基金This work has been partially supported by the "Generalitat Valenciana" grant GV1118/93the Spanish D. G. I. C. Y.T. grant PB93-0381
文摘In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.
文摘Some new oscillation criteria are given for forced second order differential equations with mixed nonlinearities by using the generalized variational principle and Riccati technique. Our results generalize and extend some known oscillation results in the literature.
文摘In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.
文摘In this paper we study the Oscillatory behaviour of the second order delay differenceequation.(1)△(r<sub>n</sub>△A<sub>n</sub>)+P<sub>n</sub>A<sub>n-k</sub>=0,n=n<sub>0</sub>,n<sub>0</sub>+1……where{P<sub>n</sub>}(?)is a nonnegative Sequenceof real number,(?)is a positive sequence of real number with sum from n=n<sub>0</sub> to +∞(1/r<sub>n</sub>)=+∞,K is a positive integer and △A<sub>n</sub>=A<sub>n+1</sub>-A<sub>n</sub> we prove that each one of following conditions.imples that al solutions of Eq(1)oscillate,where R<sub>n</sub>=sum from i=n<sub>0</sub> to n(1/r<sub>i</sub>
文摘In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1= d ψ d z and ψ 2= d 2ψ d z 2 are presented.