期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
AN ADI GALERKIN METHOD WITH MOVING FINITE ELEMENT SPACES FOR A CLASS OF SECOND-ORDER HYPERBOLIC EQUATIONS
1
作者 孙同军 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2001年第1期45-58,共14页
An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
关键词 alternating direction implicit method moving finite element second order hyperbolic equations.
下载PDF
BOUNDARY DIFFERENCE-INTEGRAL EQUATION METHOD AND ITS ERROR ESTIMATES FOR SECOND ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION
2
作者 羊丹平 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1993年第3期223-235,共13页
Combining difference method and boundary integral equation method,we propose a new numerical method for solving initial-boundary value problem of second order hyperbolic partial differential equations defined on a bou... Combining difference method and boundary integral equation method,we propose a new numerical method for solving initial-boundary value problem of second order hyperbolic partial differential equations defined on a bounded or unbounded domain in R~3 and obtain the error estimates of the approximate solution in energy norm and local maximum norm. 展开更多
关键词 BOUNDARY DIFFERENCE-INTEGRAL equation METHOD AND ITS ERROR ESTIMATES FOR second order hyperbolic PARTIAL DIFFERENTIAL equation
原文传递
A priori error estimates of finite volume element method for hyperbolic optimal control problems 被引量:5
3
作者 LUO XianBing CHEN YanPing HUANG YunQing 《Science China Mathematics》 SCIE 2013年第5期901-914,共14页
In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discre... In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discrete optimal system is obtained.We prove the existence and uniqueness of the solution to the semidiscrete optimal system and obtain the optimal order error estimates in L ∞(J;L 2)-and L ∞(J;H 1)-norm.Numerical experiments are presented to test these theoretical results. 展开更多
关键词 second order hyperbolic equation optimal control problems finite volume element method dis- tributed control variational discretization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部