An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
Combining difference method and boundary integral equation method,we propose a new numerical method for solving initial-boundary value problem of second order hyperbolic partial differential equations defined on a bou...Combining difference method and boundary integral equation method,we propose a new numerical method for solving initial-boundary value problem of second order hyperbolic partial differential equations defined on a bounded or unbounded domain in R~3 and obtain the error estimates of the approximate solution in energy norm and local maximum norm.展开更多
In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discre...In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discrete optimal system is obtained.We prove the existence and uniqueness of the solution to the semidiscrete optimal system and obtain the optimal order error estimates in L ∞(J;L 2)-and L ∞(J;H 1)-norm.Numerical experiments are presented to test these theoretical results.展开更多
基金the National Natural Sciences Foundation of China
文摘An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
基金China State Major Key Project for Basic Researches
文摘Combining difference method and boundary integral equation method,we propose a new numerical method for solving initial-boundary value problem of second order hyperbolic partial differential equations defined on a bounded or unbounded domain in R~3 and obtain the error estimates of the approximate solution in energy norm and local maximum norm.
基金supported by National Natural Science Foundation of China(Grant Nos.11261011,11271145 and 11031006)Foundation of Guizhou Science and Technology Department(Grant No.[2011]2098)+2 种基金Foundation for Talent Introduction of Guangdong Provincial UniversitySpecialized Research Fund for the Doctoral Program of Higher Education(Grant No. 20114407110009)the Project of Department of Education of Guangdong Province(Grant No. 2012KJCX0036)
文摘In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discrete optimal system is obtained.We prove the existence and uniqueness of the solution to the semidiscrete optimal system and obtain the optimal order error estimates in L ∞(J;L 2)-and L ∞(J;H 1)-norm.Numerical experiments are presented to test these theoretical results.