本文提出了一种OTEC(OTEC,Ocean Thermal Energy Conversion)增温再热朗肯动力循环,通过第二类吸收式热泵提升热源品质,在热力循环中创造一个相对高温区,与表层温海水共同对朗肯循环的湿工质进行过热,保证了透平出口干度,提升了循环的...本文提出了一种OTEC(OTEC,Ocean Thermal Energy Conversion)增温再热朗肯动力循环,通过第二类吸收式热泵提升热源品质,在热力循环中创造一个相对高温区,与表层温海水共同对朗肯循环的湿工质进行过热,保证了透平出口干度,提升了循环的平均吸热温度,实现了单一热源下的梯级加热和能级匹配,系统效率得到较大的提升。论文构建了OTEC增温再热朗肯动力循环热力学模型,对比了增温再热朗肯动力循环与传统循环的热力性能,并分析了热泵子循环的最佳增温温度。结果表明:增温再热的效果与OTEC循环工质有较大关联,且存在最佳增温温度;对于采用R134A等近似等熵工质的OTEC循环,增温再热的热力性能提升不明显;而对于CO_(2)等工作在亚临界区间的工质而言,增温再热可使热效率提升19.63%41.71%;对于NH3等过热需求较大工质而言,增温再热具有显著的提升效果;其中NH3工质的提升幅度最高,最佳增温温度为42.5°C,OTEC循环热效率可由2.34%提升至4.25%,升幅达84.45%。展开更多
再热温度控制器(Reheat Temperature Controller,RTC)的作用是调节汽水分离再热器(Moisture Separator Reheater,MSR)二级再热蒸汽温度,从而控制MSR出口蒸汽温度。文章阐述分析RTC的控制方案,并使用Emerson公司的Ovation系统建立了RTC及...再热温度控制器(Reheat Temperature Controller,RTC)的作用是调节汽水分离再热器(Moisture Separator Reheater,MSR)二级再热蒸汽温度,从而控制MSR出口蒸汽温度。文章阐述分析RTC的控制方案,并使用Emerson公司的Ovation系统建立了RTC及MSR和汽轮机的数学模型,通过仿真试验证明RTC满足温度控制的要求。展开更多
文摘本文提出了一种OTEC(OTEC,Ocean Thermal Energy Conversion)增温再热朗肯动力循环,通过第二类吸收式热泵提升热源品质,在热力循环中创造一个相对高温区,与表层温海水共同对朗肯循环的湿工质进行过热,保证了透平出口干度,提升了循环的平均吸热温度,实现了单一热源下的梯级加热和能级匹配,系统效率得到较大的提升。论文构建了OTEC增温再热朗肯动力循环热力学模型,对比了增温再热朗肯动力循环与传统循环的热力性能,并分析了热泵子循环的最佳增温温度。结果表明:增温再热的效果与OTEC循环工质有较大关联,且存在最佳增温温度;对于采用R134A等近似等熵工质的OTEC循环,增温再热的热力性能提升不明显;而对于CO_(2)等工作在亚临界区间的工质而言,增温再热可使热效率提升19.63%41.71%;对于NH3等过热需求较大工质而言,增温再热具有显著的提升效果;其中NH3工质的提升幅度最高,最佳增温温度为42.5°C,OTEC循环热效率可由2.34%提升至4.25%,升幅达84.45%。
文摘再热温度控制器(Reheat Temperature Controller,RTC)的作用是调节汽水分离再热器(Moisture Separator Reheater,MSR)二级再热蒸汽温度,从而控制MSR出口蒸汽温度。文章阐述分析RTC的控制方案,并使用Emerson公司的Ovation系统建立了RTC及MSR和汽轮机的数学模型,通过仿真试验证明RTC满足温度控制的要求。