Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of...Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of minimizing the beamformer's output power while keeping the distortionless response (DR) in the direction of desired signal and keeping the constant beamwidth (CB) with the prescribed sidelobe level over the whole operating band. This kind of beamforming problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our beamformer.展开更多
Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algor...Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algorithms use the Newton direction and the Euler direction as the predictor directions, respectively. The corrector directions belong to the category of the Alizadeh-Haeberly-Overton (AHO) directions. These algorithms are suitable to the cases of feasible and infeasible interior iterative points. A simpler neighborhood of the central path for the SOCP is proposed, which is the pivotal difference from other interior-point predictor-corrector algorithms. Under some assumptions, the algorithms possess the global, linear, and quadratic convergence. The complexity bound O(rln(εo/ε)) is obtained, where r denotes the number of the second-order cones in the SOCP problem. The numerical results show that the proposed algorithms are effective.展开更多
A vu-decomposition method for solving a second-order cone problem is presented in this paper. It is first transformed into a nonlinear programming problem. Then, the structure of the Clarke subdifferential correspondi...A vu-decomposition method for solving a second-order cone problem is presented in this paper. It is first transformed into a nonlinear programming problem. Then, the structure of the Clarke subdifferential corresponding to the penalty function and some results of itsvu-decomposition are given. Under a certain condition, a twice continuously differentiable trajectory is computed to produce a second-order expansion of the objective function. A conceptual algorithm for solving this problem with a superlinear convergence rate is given.展开更多
A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorith...A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorithm does not require the feasibility of the initial points and iteration points. Under suitable assumptions, it is shown that the algorithm can find an -approximate solution of an SOCP in at most O(√n ln(ε0/ε)) iterations. The iteration-complexity bound of our algorithm is almost the same as the best known bound of feasible interior point algorithms for the SOCP.展开更多
A Mond-Weir type second-order dual continuous programming problem associated with a class of nondifferentiable continuous programming problems is formulated. Under second-order pseudo-invexity and second-order quasi-i...A Mond-Weir type second-order dual continuous programming problem associated with a class of nondifferentiable continuous programming problems is formulated. Under second-order pseudo-invexity and second-order quasi-invexity various duality theorems are established for this pair of dual continuous programming problems. A pair of dual continuous programming problems with natural boundary values is constructed and the proofs of its various duality results are briefly outlined. Further, it is shown that our results can be regarded as dynamic generalizations of corresponding (static) second-order duality theorems for a class of nondifferentiable nonlinear programming problems already studied in the literature.展开更多
A second-order dual problem is formulated for a class of continuous programming problem in which both objective and constrained functions contain support functions, hence it is nondifferentiable. Under second-order in...A second-order dual problem is formulated for a class of continuous programming problem in which both objective and constrained functions contain support functions, hence it is nondifferentiable. Under second-order invexity and second-order pseudoinvexity, weak, strong and converse duality theorems are established for this pair of dual problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed. A close relationship between duality results of our problems and those of the corresponding (static) nonlinear programming problem with support functions is briefly outlined.展开更多
Fritz John and Karush-Kuhn-Tucker type optimality conditions for a nondifferentiable multiobjective variational problem are derived. As an application of Karush-Kuhn-Tucker type optimality conditions, Mond-weir type s...Fritz John and Karush-Kuhn-Tucker type optimality conditions for a nondifferentiable multiobjective variational problem are derived. As an application of Karush-Kuhn-Tucker type optimality conditions, Mond-weir type second-order nondifferentiable multiobjective dual variational problems is constructed. Various duality results for the pair of Mond-Weir type second-order dual variational problems are proved under second-order pseudoinvexity and second-order quasi-invexity. A pair of Mond-Weir type dual variational problems with natural boundary values is formulated to derive various duality results. Finally, it is pointed out that our results can be considered as dynamic generalizations of their static counterparts existing in the literature.展开更多
In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent opera...In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent operator equations for the convex programming problems under the certain conditions are obtained. Then a second-order differential equation system with the feedback controls is constructed on the basis of operator equation. We prove that any accumulation point of the trajectory of the second-order differential equation system with the feedback controls is a solution to the convex programming problem. In the end, two examples using this differential equation system are solved. The numerical results are reported to verify the effectiveness of the second-order differential equation system with the feedback controls for solving the convex programming problem.展开更多
In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space w...In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.展开更多
Given a real finite-dimensional or infinite-dimensional Hilbert space H with a Jordan product, the second-order cone linear complementarity problem(SOCLCP)is considered. Some conditions are investigated, for which the...Given a real finite-dimensional or infinite-dimensional Hilbert space H with a Jordan product, the second-order cone linear complementarity problem(SOCLCP)is considered. Some conditions are investigated, for which the SOCLCP is feasible and solvable for any element q?H. The solution set of a monotone SOCLCP is also characterized. It is shown that the second-order cone and Jordan product are interconnected.展开更多
New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the cond...New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.展开更多
In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the...In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the static response problem of structures with fairly large uncertainties in interval parameters. Although current methods are effective for solving the static response problem of structures with interval parameters with small uncertainties, these methods may fail to estimate the region of the static response of uncertain structures if the uncertainties in the parameters are fairly large. To resolve this problem, first, the general expression of the static response of structures in terms of structural parameters is derived based on the second-order Taylor series expansion. Then the problem of determining the bounds of the static response of uncertain structures is transformed into a series of quadratic problems with box constraints. These quadratic problems with box constraints can be solved using the DCA approach effectively. The numerical examples are given to illustrate the accuracy and the efficiency of the proposed method when comparing with other existing methods.展开更多
A second-order Mond-Weir type dual problem is formulated for a class of continuous programming problems in which both objective and constraint functions contain support functions;hence it is nondifferentiable. Under s...A second-order Mond-Weir type dual problem is formulated for a class of continuous programming problems in which both objective and constraint functions contain support functions;hence it is nondifferentiable. Under second-order strict pseudoinvexity, second-order pseudoinvexity and second-order quasi-invexity assumptions on functionals, weak, strong, strict converse and converse duality theorems are established for this pair of dual continuous programming problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed. A close relationship between the duality results of our problems and those of the corresponding (static) nonlinear programming problem with support functions is briefly outlined.展开更多
基金supported by the National Nature Science Foundation of China (60472101)President Award of ChineseAcademy of Sciences(O729031511).
文摘Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of minimizing the beamformer's output power while keeping the distortionless response (DR) in the direction of desired signal and keeping the constant beamwidth (CB) with the prescribed sidelobe level over the whole operating band. This kind of beamforming problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our beamformer.
基金supported by the National Natural Science Foundation of China (Nos. 71061002 and 11071158)the Natural Science Foundation of Guangxi Province of China (Nos. 0832052 and 2010GXNSFB013047)
文摘Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algorithms use the Newton direction and the Euler direction as the predictor directions, respectively. The corrector directions belong to the category of the Alizadeh-Haeberly-Overton (AHO) directions. These algorithms are suitable to the cases of feasible and infeasible interior iterative points. A simpler neighborhood of the central path for the SOCP is proposed, which is the pivotal difference from other interior-point predictor-corrector algorithms. Under some assumptions, the algorithms possess the global, linear, and quadratic convergence. The complexity bound O(rln(εo/ε)) is obtained, where r denotes the number of the second-order cones in the SOCP problem. The numerical results show that the proposed algorithms are effective.
基金Project supported by the National Natural Science Foundation of China (No. 10771026)the Foundation of Dalian University of Technology (Nos. MXDUT73008 and MXDUT98009)
文摘A vu-decomposition method for solving a second-order cone problem is presented in this paper. It is first transformed into a nonlinear programming problem. Then, the structure of the Clarke subdifferential corresponding to the penalty function and some results of itsvu-decomposition are given. Under a certain condition, a twice continuously differentiable trajectory is computed to produce a second-order expansion of the objective function. A conceptual algorithm for solving this problem with a superlinear convergence rate is given.
基金the National Science Foundation(60574075, 60674108)
文摘A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorithm does not require the feasibility of the initial points and iteration points. Under suitable assumptions, it is shown that the algorithm can find an -approximate solution of an SOCP in at most O(√n ln(ε0/ε)) iterations. The iteration-complexity bound of our algorithm is almost the same as the best known bound of feasible interior point algorithms for the SOCP.
文摘A Mond-Weir type second-order dual continuous programming problem associated with a class of nondifferentiable continuous programming problems is formulated. Under second-order pseudo-invexity and second-order quasi-invexity various duality theorems are established for this pair of dual continuous programming problems. A pair of dual continuous programming problems with natural boundary values is constructed and the proofs of its various duality results are briefly outlined. Further, it is shown that our results can be regarded as dynamic generalizations of corresponding (static) second-order duality theorems for a class of nondifferentiable nonlinear programming problems already studied in the literature.
文摘A second-order dual problem is formulated for a class of continuous programming problem in which both objective and constrained functions contain support functions, hence it is nondifferentiable. Under second-order invexity and second-order pseudoinvexity, weak, strong and converse duality theorems are established for this pair of dual problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed. A close relationship between duality results of our problems and those of the corresponding (static) nonlinear programming problem with support functions is briefly outlined.
文摘Fritz John and Karush-Kuhn-Tucker type optimality conditions for a nondifferentiable multiobjective variational problem are derived. As an application of Karush-Kuhn-Tucker type optimality conditions, Mond-weir type second-order nondifferentiable multiobjective dual variational problems is constructed. Various duality results for the pair of Mond-Weir type second-order dual variational problems are proved under second-order pseudoinvexity and second-order quasi-invexity. A pair of Mond-Weir type dual variational problems with natural boundary values is formulated to derive various duality results. Finally, it is pointed out that our results can be considered as dynamic generalizations of their static counterparts existing in the literature.
文摘In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent operator equations for the convex programming problems under the certain conditions are obtained. Then a second-order differential equation system with the feedback controls is constructed on the basis of operator equation. We prove that any accumulation point of the trajectory of the second-order differential equation system with the feedback controls is a solution to the convex programming problem. In the end, two examples using this differential equation system are solved. The numerical results are reported to verify the effectiveness of the second-order differential equation system with the feedback controls for solving the convex programming problem.
基金supported by the National Natural Science Foundation of China(11401126,71471140 and 11361018)Guangxi Natural Science Foundation(2016GXNSFBA380102 and 2014GXNSFFA118001)+2 种基金Guangxi Key Laboratory of Cryptography and Information Security(GCIS201618)Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ15112 and YQ16112)China
文摘In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.
基金Supported by the National Natural Science Foundation of China(No.11101302 and No.11471241)
文摘Given a real finite-dimensional or infinite-dimensional Hilbert space H with a Jordan product, the second-order cone linear complementarity problem(SOCLCP)is considered. Some conditions are investigated, for which the SOCLCP is feasible and solvable for any element q?H. The solution set of a monotone SOCLCP is also characterized. It is shown that the second-order cone and Jordan product are interconnected.
文摘New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.
基金supported by the National Natural Science Foundation of China (Grants 11002013, 11372025)the Defense Industrial Technology Development Program (Grants A0820132001, JCKY2013601B)+1 种基金the Aeronautical Science Foundation of China (Grant 2012ZA51010)111 Project (Grant B07009) for support
文摘In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the static response problem of structures with fairly large uncertainties in interval parameters. Although current methods are effective for solving the static response problem of structures with interval parameters with small uncertainties, these methods may fail to estimate the region of the static response of uncertain structures if the uncertainties in the parameters are fairly large. To resolve this problem, first, the general expression of the static response of structures in terms of structural parameters is derived based on the second-order Taylor series expansion. Then the problem of determining the bounds of the static response of uncertain structures is transformed into a series of quadratic problems with box constraints. These quadratic problems with box constraints can be solved using the DCA approach effectively. The numerical examples are given to illustrate the accuracy and the efficiency of the proposed method when comparing with other existing methods.
文摘A second-order Mond-Weir type dual problem is formulated for a class of continuous programming problems in which both objective and constraint functions contain support functions;hence it is nondifferentiable. Under second-order strict pseudoinvexity, second-order pseudoinvexity and second-order quasi-invexity assumptions on functionals, weak, strong, strict converse and converse duality theorems are established for this pair of dual continuous programming problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed. A close relationship between the duality results of our problems and those of the corresponding (static) nonlinear programming problem with support functions is briefly outlined.