Black locust (Robinia pseudoacacia L.) is one of the most important stand-forming tree species in Hungary and its impor- tance is increasing in many countries. The main aim of the discussed new selection programme i...Black locust (Robinia pseudoacacia L.) is one of the most important stand-forming tree species in Hungary and its impor- tance is increasing in many countries. The main aim of the discussed new selection programme is to identify black locust clones with good performance and good form for setting up clonal seed orchards. As a result of selection programme 16 new black locust clones have been improved. In spring 2002 a black locust seed orchard was established with the newly selected clones. About 40% of the plants can be considered to belong to the height growth rate class 1 and 2. Hungary was the first country where micropropagated black locust planting material was used for seed orchard establishment.展开更多
[ Objective] To explore the effects of spaceflight on the second-generation seeds of alfalfa and provide a theoretical basis for mutation breeding. [Method] The seeds of Medicago stavia L. lines no. 1, no. 2 and no. 4...[ Objective] To explore the effects of spaceflight on the second-generation seeds of alfalfa and provide a theoretical basis for mutation breeding. [Method] The seeds of Medicago stavia L. lines no. 1, no. 2 and no. 4 were carried into space by the Shijian-8 seed breeding satellite for a 15-d spaceflight treatment. After returning to the ground, seedlings were transplanted to field. Traits of the second-generation seeds of alfalfa were evaluated. [Result] The 1 000-grain weight of the second-generation seeds were 5% -9% significantly higher than that the control (P 〈 0.05). The germination rate, seedling weight, shoot length and root length were significantly increased (P 〈 0.05). The hard seed rate and the rate of moldy seeds were significantly decreased ( P 〈 0.05). However, the rate of dead seeds was increased. [ Conclusion] Spaceflight treatment has positive mutagenic effects on the second-generation seeds of alfalfa.展开更多
The features of branching and growth studied included height, diameter at breast height (DBH), total number of branches, annual height growth, annual branch elongation in the year of elongating, annual branch number f...The features of branching and growth studied included height, diameter at breast height (DBH), total number of branches, annual height growth, annual branch elongation in the year of elongating, annual branch number for four consecutive years, diameter of branches of different ages, and diameter of stem where branch-whorl originates. For features of total growth and overall branching, no significant differences were found between families, except for DBH. For annual features, no significant differences were found in annual stem height growth, annual branch elongation in the year of elongation and diameter of branches. In the last four years, differences in number of branches were not significant in the first two years but were significant in the last two year; differences in stem diameter where branch-whorls grow were significant for the four consecutive years. Trend of annual growth and branching features of families can be divided into three types as increasing type, stable type and fluctuating type. Most of families have an increasing type with respect of annual height growth and annual branch elongation, while most families belong to a fluctuating type with annual branch number. The results indicated that in the fifth year after planted in seedling seed orchard, differences between families were mostly insignificant. This result may have two main explanations: one is the growth rhyme in early ages of Masson pine, the other one is the complex paternal components to form the open-pollinated families. Family selection seemed to be not useful based on the result. It is suggested to select some of families in the nursery instead of to use all the families when establishing seedling seed orchards with open-pollinated families from plus-trees.展开更多
Through 5 years of phenological observations on Larix principis-rupprechtii Mayr. in primary seed orchard and studies on population and individuals of clones, the annual periodic phenological laws were revealed and th...Through 5 years of phenological observations on Larix principis-rupprechtii Mayr. in primary seed orchard and studies on population and individuals of clones, the annual periodic phenological laws were revealed and the annual phe-nological periodic table was drawn up. The correlation between various phenophases, the air temperature and active accumu-lated temperature were analyzed and expounded. The authors also analyzed the similarities and differences of phenophases among clonal individuals as well as the blooming properties of male and female flowers at the same time. This study could pro-vide theoretical reference for working out the production plan of improved varieties and other management measures in seed orchard of Larix principis-rupprechtii.展开更多
We evaluated seed production in a first-gener- ation orchard of Chinese pine (Pinus tabuliformis) during the crucial transition period from first generation to advanced generations. Clones varied significantly in al...We evaluated seed production in a first-gener- ation orchard of Chinese pine (Pinus tabuliformis) during the crucial transition period from first generation to advanced generations. Clones varied significantly in all traits related to seed production. Repeatability of these traits ranged from 0 to 0.96. Seed production per ramet (SPPR), seed producing index (SPI), the number of relative female strobili (RFS), the number of scales, and the num- ber of ineffective scales had comparatively high repeata- bility at 0.86, 0.87, 0.89, 0.96, and 0.91, respectively. Correlation analysis showed that SPPR was greatly influenced by RFS and by the number of full seeds per cone. Finally, we showed that SPI was the best predictor of the seed-producing ability of clones. Our findings will assist seed orchard managers in effectively predicting and improving seed production of Chinese pine seed orchards.展开更多
The patterns of effective pollen dispersal and the relationships between pollen dispersal and genetic composition in Pinus koraiensis are still unclear. Hence, we investigated the mode of pollen dispersal of P. koraie...The patterns of effective pollen dispersal and the relationships between pollen dispersal and genetic composition in Pinus koraiensis are still unclear. Hence, we investigated the mode of pollen dispersal of P. koraiensis in a clonal seed orchard in Lushuihe Forestry Bureau, Jilin Province, using SSR molecular markers tech-nique and the method of maximum likelihood. A total of 13 pairs of nuclear microsatellites po-lymorphic primers were used in the paternity analysis. We analyzed 100 progenies and 150 paternities. A total of 56 alleles were detected in 13 loci with 3-6 alleles (4.3 alleles in average) in a single locus. The primers of SsrPt_ctg7170 and SsrPt_ctg5333 had the maximum (6) and the minimum (3) alleles, respectively. The averaged values of observed heterozygosity, expected heterozygosity and polymorphism information content of experimental groups were 0.648, 0.601 and 0.533, respectively. The mating dis-tance of P. koraiensis followed an approximately normal distribution. The most effective pollen for the female parent came from male parent trees 15-45 m away with an average mating dis-tance of 32.60 m and the longest of 67.88 m. The pollen source of offspring was not random but greatly affected by the wind direction during the pollination season of P. koraiensis. These re-sults have important implications for seed or-chard design to improve the genetic quality of seeds and seed production.展开更多
Background:Inbreeding in seed orchards is expected to increase with the advancement of breeding cycles,which results in the delivery of crops with suboptimal genetic gain,reduced genetic diversity,and lower seed set.H...Background:Inbreeding in seed orchards is expected to increase with the advancement of breeding cycles,which results in the delivery of crops with suboptimal genetic gain,reduced genetic diversity,and lower seed set.Here,a genetic distance-dependent method for clonal spatial deployment in seed orchards was developed and demonstrated,which reduced the inbreeding levels.The method’s main evaluation parameter of inbreeding is the genetic distance among individuals and the deployment method used an improved adaptive parallel genetic algorithm(IAPGA)based on Python language.Using inbreeding-prone Chinese Mongolian pine breeding population material originating from a single natural population,the proposed method was compared to a traditional orchard design and a distance-based design;namely,complete randomized block(RCB)and optimum neighborhood(ONA)designs,respectively.Results:With the advancement of selective breeding cycles,group separation among orchard related individuals is expected to increase.Based on the genetic distance among individuals,the IAPGA design was superior in significantly reducing the inbreeding level as compared to the two existing designs,confirming its suitability to advanced-generation orchards where relatedness among parents is common.In the 1st,2nd,and mixed generations clonal deployment schemes,the IAPGA design produced lower inbreeding with 87.22%,81.49%,and 87.23%of RCB,and 92.78%,91.30%,and 91.67%of ONA designs,respectively.Conclusions:The IAPGA clonal deployment proposed in this study has the obvious advantage of controlling inbreeding,and it is expected to be used in clonal deployment in seed orchards on a large-scale.Further studies are needed to focus on the actual states of pollen dispersal and mating in seed orchards,and more assumptions should be taken into account for the optimized deployment method.展开更多
We evaluated a clone trial comprised of 20 ramets each of 40 Eucalyptus camaldulensis clones for growth and fertility at 4 years of age. The clones differed significantly in growth with 65-100 % survival in 38 clones ...We evaluated a clone trial comprised of 20 ramets each of 40 Eucalyptus camaldulensis clones for growth and fertility at 4 years of age. The clones differed significantly in growth with 65-100 % survival in 38 clones while two clones had low survival (40 and 10 %). Fecundity was high and fertility variation low, as indicated by the sibling coefficient value (ψ = 1.4) with 55 % of clones contributing 80 % of the fruits. Thinning strategies were considered to convert the clone trial to a clonal seed orchard and enhance both gain and diversity in seed crop. When clones were selected based on growth without con- sidering fertility, truncation selection (to retain clones with higher DBH than the trial mean value) would give 8 % gain, but 59 % reduction in effective population size (Ne). Gain and predicted diversity (Ne) was highest when ramets were selected in linear proportion to the breeding value of each clone. Mass selection with the same intercept (for DBH) as truncation selection would give a moderate 3 % gain, but over two times higher predicted Ne than trunca- tion selection. When fertility of retained trees was con- sidered after thinning, mass selection would yield 52 % effective contribution from the orchard trees compared to only 30 % contribution from truncation selection and linear thinning. Higher representation of superior clones in linear thinning and mass selection would lead to greater fertilityvariation and over 30 % reduction in effective clone number (Nc) from that predicted (Ne, assuming equal fer- tility among ramets) before thinning.展开更多
Forest tree species reproduction is a key factor in maintaining the genetic diversity of future generations and the stability of forest ecosystems.The ongoing ash dieback disease could affect the reproductive ecology ...Forest tree species reproduction is a key factor in maintaining the genetic diversity of future generations and the stability of forest ecosystems.The ongoing ash dieback disease could affect the reproductive ecology of Fraxinus excelsior L.and have a major impact on the quantity and quality of pollen and seeds.In this study,we investigated pollen production and viability of pollen and seeds of ash trees with different health status from 2018 to 2022.Inflorescences were collected from 105 trees(pollen production),pollen from 125 trees(pollen viability),and seeds from 53 trees(seed quality)in two seed orchards and in one floodplain forest in southern Germany.Not all parameters were examined at every site every year.The average pollen production per tree was estimated at 471.2±647.9 billion pollen grains.In addition,we found that a high number of inflorescences did not equate to high pollen production per inflorescence.Pollen production of healthy and diseased trees did not differ significantly,although only 47%of severely diseased male trees(vs.72%for healthy trees)produced flowers.With regards to pollen viability,the TTC test showed an average viability of 73%±17%.Overall,there was a slight tendency for diseased trees to have less viable pollen.However,a significant difference could only be calculated for trees in the floodplain forest.The percentage of germinable seeds in 2018 was 38%in the floodplain forest and 57%in one of the seed orchards.The percentage of viable seeds(TTC test)ranged from 17 to 22%in the orchards in 2020.Non-viable seeds were usually heavily infested by insects.In general,seed quality was not significantly different between healthy and diseased trees.Our results indicate that ash dieback affects flower formation and pollen viability but not pollen production or seed quality.Nevertheless,the fact that hardly any flowering was observed,especially for trees that were seriously affected,suggests a negative effect of ash dieback on reproductive performance.Thus,severely diseased trees will transfer their genes to a smaller extent to the next generation.展开更多
文摘Black locust (Robinia pseudoacacia L.) is one of the most important stand-forming tree species in Hungary and its impor- tance is increasing in many countries. The main aim of the discussed new selection programme is to identify black locust clones with good performance and good form for setting up clonal seed orchards. As a result of selection programme 16 new black locust clones have been improved. In spring 2002 a black locust seed orchard was established with the newly selected clones. About 40% of the plants can be considered to belong to the height growth rate class 1 and 2. Hungary was the first country where micropropagated black locust planting material was used for seed orchard establishment.
基金supported by the grants of the National Key Technology R&D Program (2008BADB3B04 )Basic Science and Research Special Fund for the State Level and Public Scientific Research Institute (Grassland Research Institute,Chinese Academy of Agricultural Sciences) (2007-1-02)
文摘[ Objective] To explore the effects of spaceflight on the second-generation seeds of alfalfa and provide a theoretical basis for mutation breeding. [Method] The seeds of Medicago stavia L. lines no. 1, no. 2 and no. 4 were carried into space by the Shijian-8 seed breeding satellite for a 15-d spaceflight treatment. After returning to the ground, seedlings were transplanted to field. Traits of the second-generation seeds of alfalfa were evaluated. [Result] The 1 000-grain weight of the second-generation seeds were 5% -9% significantly higher than that the control (P 〈 0.05). The germination rate, seedling weight, shoot length and root length were significantly increased (P 〈 0.05). The hard seed rate and the rate of moldy seeds were significantly decreased ( P 〈 0.05). However, the rate of dead seeds was increased. [ Conclusion] Spaceflight treatment has positive mutagenic effects on the second-generation seeds of alfalfa.
基金This paper was a part of the National Key Project of Science and Technology on Masson Pine breeding during 1996-2000.
文摘The features of branching and growth studied included height, diameter at breast height (DBH), total number of branches, annual height growth, annual branch elongation in the year of elongating, annual branch number for four consecutive years, diameter of branches of different ages, and diameter of stem where branch-whorl originates. For features of total growth and overall branching, no significant differences were found between families, except for DBH. For annual features, no significant differences were found in annual stem height growth, annual branch elongation in the year of elongation and diameter of branches. In the last four years, differences in number of branches were not significant in the first two years but were significant in the last two year; differences in stem diameter where branch-whorls grow were significant for the four consecutive years. Trend of annual growth and branching features of families can be divided into three types as increasing type, stable type and fluctuating type. Most of families have an increasing type with respect of annual height growth and annual branch elongation, while most families belong to a fluctuating type with annual branch number. The results indicated that in the fifth year after planted in seedling seed orchard, differences between families were mostly insignificant. This result may have two main explanations: one is the growth rhyme in early ages of Masson pine, the other one is the complex paternal components to form the open-pollinated families. Family selection seemed to be not useful based on the result. It is suggested to select some of families in the nursery instead of to use all the families when establishing seedling seed orchards with open-pollinated families from plus-trees.
文摘Through 5 years of phenological observations on Larix principis-rupprechtii Mayr. in primary seed orchard and studies on population and individuals of clones, the annual periodic phenological laws were revealed and the annual phe-nological periodic table was drawn up. The correlation between various phenophases, the air temperature and active accumu-lated temperature were analyzed and expounded. The authors also analyzed the similarities and differences of phenophases among clonal individuals as well as the blooming properties of male and female flowers at the same time. This study could pro-vide theoretical reference for working out the production plan of improved varieties and other management measures in seed orchard of Larix principis-rupprechtii.
基金supported by ‘‘the Fundamental Research Funds for the Central Universities(No.2015ZCQ-SW-02)’’ and ‘‘Special Fund for Forestry Scientific Research in the Public Interest(No.201104022)’’
文摘We evaluated seed production in a first-gener- ation orchard of Chinese pine (Pinus tabuliformis) during the crucial transition period from first generation to advanced generations. Clones varied significantly in all traits related to seed production. Repeatability of these traits ranged from 0 to 0.96. Seed production per ramet (SPPR), seed producing index (SPI), the number of relative female strobili (RFS), the number of scales, and the num- ber of ineffective scales had comparatively high repeata- bility at 0.86, 0.87, 0.89, 0.96, and 0.91, respectively. Correlation analysis showed that SPPR was greatly influenced by RFS and by the number of full seeds per cone. Finally, we showed that SPI was the best predictor of the seed-producing ability of clones. Our findings will assist seed orchard managers in effectively predicting and improving seed production of Chinese pine seed orchards.
文摘The patterns of effective pollen dispersal and the relationships between pollen dispersal and genetic composition in Pinus koraiensis are still unclear. Hence, we investigated the mode of pollen dispersal of P. koraiensis in a clonal seed orchard in Lushuihe Forestry Bureau, Jilin Province, using SSR molecular markers tech-nique and the method of maximum likelihood. A total of 13 pairs of nuclear microsatellites po-lymorphic primers were used in the paternity analysis. We analyzed 100 progenies and 150 paternities. A total of 56 alleles were detected in 13 loci with 3-6 alleles (4.3 alleles in average) in a single locus. The primers of SsrPt_ctg7170 and SsrPt_ctg5333 had the maximum (6) and the minimum (3) alleles, respectively. The averaged values of observed heterozygosity, expected heterozygosity and polymorphism information content of experimental groups were 0.648, 0.601 and 0.533, respectively. The mating dis-tance of P. koraiensis followed an approximately normal distribution. The most effective pollen for the female parent came from male parent trees 15-45 m away with an average mating dis-tance of 32.60 m and the longest of 67.88 m. The pollen source of offspring was not random but greatly affected by the wind direction during the pollination season of P. koraiensis. These re-sults have important implications for seed or-chard design to improve the genetic quality of seeds and seed production.
基金grants from The Fundamental Research Funds for the Central Universities(2015-02)the National Natural Science Foundation of China(Nos.31770713,31860221).
文摘Background:Inbreeding in seed orchards is expected to increase with the advancement of breeding cycles,which results in the delivery of crops with suboptimal genetic gain,reduced genetic diversity,and lower seed set.Here,a genetic distance-dependent method for clonal spatial deployment in seed orchards was developed and demonstrated,which reduced the inbreeding levels.The method’s main evaluation parameter of inbreeding is the genetic distance among individuals and the deployment method used an improved adaptive parallel genetic algorithm(IAPGA)based on Python language.Using inbreeding-prone Chinese Mongolian pine breeding population material originating from a single natural population,the proposed method was compared to a traditional orchard design and a distance-based design;namely,complete randomized block(RCB)and optimum neighborhood(ONA)designs,respectively.Results:With the advancement of selective breeding cycles,group separation among orchard related individuals is expected to increase.Based on the genetic distance among individuals,the IAPGA design was superior in significantly reducing the inbreeding level as compared to the two existing designs,confirming its suitability to advanced-generation orchards where relatedness among parents is common.In the 1st,2nd,and mixed generations clonal deployment schemes,the IAPGA design produced lower inbreeding with 87.22%,81.49%,and 87.23%of RCB,and 92.78%,91.30%,and 91.67%of ONA designs,respectively.Conclusions:The IAPGA clonal deployment proposed in this study has the obvious advantage of controlling inbreeding,and it is expected to be used in clonal deployment in seed orchards on a large-scale.Further studies are needed to focus on the actual states of pollen dispersal and mating in seed orchards,and more assumptions should be taken into account for the optimized deployment method.
文摘We evaluated a clone trial comprised of 20 ramets each of 40 Eucalyptus camaldulensis clones for growth and fertility at 4 years of age. The clones differed significantly in growth with 65-100 % survival in 38 clones while two clones had low survival (40 and 10 %). Fecundity was high and fertility variation low, as indicated by the sibling coefficient value (ψ = 1.4) with 55 % of clones contributing 80 % of the fruits. Thinning strategies were considered to convert the clone trial to a clonal seed orchard and enhance both gain and diversity in seed crop. When clones were selected based on growth without con- sidering fertility, truncation selection (to retain clones with higher DBH than the trial mean value) would give 8 % gain, but 59 % reduction in effective population size (Ne). Gain and predicted diversity (Ne) was highest when ramets were selected in linear proportion to the breeding value of each clone. Mass selection with the same intercept (for DBH) as truncation selection would give a moderate 3 % gain, but over two times higher predicted Ne than trunca- tion selection. When fertility of retained trees was con- sidered after thinning, mass selection would yield 52 % effective contribution from the orchard trees compared to only 30 % contribution from truncation selection and linear thinning. Higher representation of superior clones in linear thinning and mass selection would lead to greater fertilityvariation and over 30 % reduction in effective clone number (Nc) from that predicted (Ne, assuming equal fer- tility among ramets) before thinning.
文摘Forest tree species reproduction is a key factor in maintaining the genetic diversity of future generations and the stability of forest ecosystems.The ongoing ash dieback disease could affect the reproductive ecology of Fraxinus excelsior L.and have a major impact on the quantity and quality of pollen and seeds.In this study,we investigated pollen production and viability of pollen and seeds of ash trees with different health status from 2018 to 2022.Inflorescences were collected from 105 trees(pollen production),pollen from 125 trees(pollen viability),and seeds from 53 trees(seed quality)in two seed orchards and in one floodplain forest in southern Germany.Not all parameters were examined at every site every year.The average pollen production per tree was estimated at 471.2±647.9 billion pollen grains.In addition,we found that a high number of inflorescences did not equate to high pollen production per inflorescence.Pollen production of healthy and diseased trees did not differ significantly,although only 47%of severely diseased male trees(vs.72%for healthy trees)produced flowers.With regards to pollen viability,the TTC test showed an average viability of 73%±17%.Overall,there was a slight tendency for diseased trees to have less viable pollen.However,a significant difference could only be calculated for trees in the floodplain forest.The percentage of germinable seeds in 2018 was 38%in the floodplain forest and 57%in one of the seed orchards.The percentage of viable seeds(TTC test)ranged from 17 to 22%in the orchards in 2020.Non-viable seeds were usually heavily infested by insects.In general,seed quality was not significantly different between healthy and diseased trees.Our results indicate that ash dieback affects flower formation and pollen viability but not pollen production or seed quality.Nevertheless,the fact that hardly any flowering was observed,especially for trees that were seriously affected,suggests a negative effect of ash dieback on reproductive performance.Thus,severely diseased trees will transfer their genes to a smaller extent to the next generation.