A fifth/seventh order dual-mode OTA-C complex filter for global navigation satellite system receivers is implemented in a 0.18μm CMOS process.This filter can be configured as the narrow mode of a 4.4 MHz bandwidth ce...A fifth/seventh order dual-mode OTA-C complex filter for global navigation satellite system receivers is implemented in a 0.18μm CMOS process.This filter can be configured as the narrow mode of a 4.4 MHz bandwidth center at 4.1 MHz or the wide mode of a 22 MHz bandwidth center at 15.42 MHz.A fully differential OTA with source degeneration is used to provide sufficient linearity.Furthermore,a ring CCO based frequency tuning scheme is proposed to reduce frequency variation.The measured results show that in narrow-band mode the image rejection ratio(IMRR)is 35 dB,the filter dissipates 0.8 mA from the 1.8 V power supply,and the out-of-band rejection is 50 dB at 6 MHz offset.In wide-band mode,IMRR is 28 dB and the filter dissipates 3.2 mA.The frequency tuning error is less than±2%.展开更多
基金supported by the National High-Tech Research and Development Program of China(No.2007AA12Z344)
文摘A fifth/seventh order dual-mode OTA-C complex filter for global navigation satellite system receivers is implemented in a 0.18μm CMOS process.This filter can be configured as the narrow mode of a 4.4 MHz bandwidth center at 4.1 MHz or the wide mode of a 22 MHz bandwidth center at 15.42 MHz.A fully differential OTA with source degeneration is used to provide sufficient linearity.Furthermore,a ring CCO based frequency tuning scheme is proposed to reduce frequency variation.The measured results show that in narrow-band mode the image rejection ratio(IMRR)is 35 dB,the filter dissipates 0.8 mA from the 1.8 V power supply,and the out-of-band rejection is 50 dB at 6 MHz offset.In wide-band mode,IMRR is 28 dB and the filter dissipates 3.2 mA.The frequency tuning error is less than±2%.