移相全桥ZVS变换器副边整流二极管电压应力较高,需要设计缓冲电路来保证系统性能。然而,加入RC缓冲电路的变换器在某种工作模式下近似为LCL三阶谐振系统,导致接近开关频率的谐振甚至在整流二极管两侧产生更高的电压应力。通过建立移相全...移相全桥ZVS变换器副边整流二极管电压应力较高,需要设计缓冲电路来保证系统性能。然而,加入RC缓冲电路的变换器在某种工作模式下近似为LCL三阶谐振系统,导致接近开关频率的谐振甚至在整流二极管两侧产生更高的电压应力。通过建立移相全桥ZVS变换器在能量传输模式期间的等效电路模型,揭示RC缓冲电路对系统稳定性产生影响机理及电路参数对振荡的影响规律,通过分析选取合理的RC缓冲电路参数,不仅有效降低整流二极管电压应力,同时抑制由缓冲电路带来的振荡问题,进而提高系统的效率。设计了一个3.2 k W(10 A,320 V)的实验样机,验证了理论分析的正确性。展开更多
锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池...锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池系统的高效能量管理和优化控制至关重要。因此本文提出了一种基于动态噪声自适应无迹卡尔曼滤波的SOC估计方法。首先,通过间歇放电实验获取电池不同SOC下的开路电压,并进一步拟合得到电池的OCV-SOC曲线,接着采用二阶RC等效电路模型对锂离子电池建模,然后通过混合功率脉冲特性工况测试对电池模型参数进行辨识。由于实际应用中锂离子电池为非线性系统且SOC估计精度容易受到噪声的影响,本文在卡尔曼滤波算法的基础上采用无迹变换处理,加入噪声自适应过程,以实现噪声特性自适应估计,动态调整测量噪声与过程噪声,提高算法鲁棒性以及估计精度。最后选取DST与FUDS工况进行验证,结果表明在不同工况下动态噪声自适应无迹卡尔曼滤波算法的估计平均绝对误差、最大绝对误差以及均方根误差相较于自适应无迹卡尔曼滤波、无迹卡尔曼滤波算法均有降低,其平均绝对误差小于0.59%。本文提出的动态噪声自适应无迹卡尔曼滤波算法能够更准确地估计锂离子电池SOC。展开更多
文摘移相全桥ZVS变换器副边整流二极管电压应力较高,需要设计缓冲电路来保证系统性能。然而,加入RC缓冲电路的变换器在某种工作模式下近似为LCL三阶谐振系统,导致接近开关频率的谐振甚至在整流二极管两侧产生更高的电压应力。通过建立移相全桥ZVS变换器在能量传输模式期间的等效电路模型,揭示RC缓冲电路对系统稳定性产生影响机理及电路参数对振荡的影响规律,通过分析选取合理的RC缓冲电路参数,不仅有效降低整流二极管电压应力,同时抑制由缓冲电路带来的振荡问题,进而提高系统的效率。设计了一个3.2 k W(10 A,320 V)的实验样机,验证了理论分析的正确性。
文摘锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池系统的高效能量管理和优化控制至关重要。因此本文提出了一种基于动态噪声自适应无迹卡尔曼滤波的SOC估计方法。首先,通过间歇放电实验获取电池不同SOC下的开路电压,并进一步拟合得到电池的OCV-SOC曲线,接着采用二阶RC等效电路模型对锂离子电池建模,然后通过混合功率脉冲特性工况测试对电池模型参数进行辨识。由于实际应用中锂离子电池为非线性系统且SOC估计精度容易受到噪声的影响,本文在卡尔曼滤波算法的基础上采用无迹变换处理,加入噪声自适应过程,以实现噪声特性自适应估计,动态调整测量噪声与过程噪声,提高算法鲁棒性以及估计精度。最后选取DST与FUDS工况进行验证,结果表明在不同工况下动态噪声自适应无迹卡尔曼滤波算法的估计平均绝对误差、最大绝对误差以及均方根误差相较于自适应无迹卡尔曼滤波、无迹卡尔曼滤波算法均有降低,其平均绝对误差小于0.59%。本文提出的动态噪声自适应无迹卡尔曼滤波算法能够更准确地估计锂离子电池SOC。