Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for Mediu...Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects.展开更多
The increase of wave energy in electricity production is an objective shared by many countries to meet growing demand and global warming. To analyze devices capable of converting the energy of sea waves into electrica...The increase of wave energy in electricity production is an objective shared by many countries to meet growing demand and global warming. To analyze devices capable of converting the energy of sea waves into electrical energy, it is important to master the various theories of gravity waves and generation. We will in our work consider a numerical waves tank for an amplitude A=0.5, a wavelength λ=0.25 , an average height H<sub>e</sub>=10 and a Froude number fixed at 1 × 10<sup>5</sup>. Numerical wave channel analysis is used to reproduce the natural phenomenon of wave propagation in an experimental model. Wave makers are usually used to generate waves in the channel. In theory, the influence of an incident wave can be considered, as in the case of our study. In this study, the evolution of the hydrodynamic parameters and the energy transported in one wavelength can be determined by calculation. A change of variable will be done in this work to facilitate the writing of the boundary conditions at the free surface and at the bottom. The nonlinear Stokes theory will be studied in this case in order to provide hydrodynamic solutions through the Navier-Stokes equations to finally deduce the energetic results. To do this, the finite difference method will be used for the hydrodynamic results such as the velocity potential and the free surface elevation and the trapezium method of Newton for the energetic results. Thus, we will determine the energetic potential according to the decrease in the slope of the tank. To do this, we will take as values of beta representing the inverse of the slope of the tank, β=100, β=105, β=110 and β=105. .展开更多
This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The...This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.展开更多
In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displa...In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.展开更多
A complete semi-analytical solution is obtained for second-order diffraction of plane bichromatic waves by a fixed truncated circular column.The fluid domain is divided into interior and exterior regions.In the exteri...A complete semi-analytical solution is obtained for second-order diffraction of plane bichromatic waves by a fixed truncated circular column.The fluid domain is divided into interior and exterior regions.In the exterior region,the second-order velocity potential is expressed in terms of‘locked-wave’and‘free-wave’ components,both are solved using Fourier and eigenfunction expansions.The re- sulting‘locked wave’potential is expressed by one-dimensional Green's integrals with oscillating integrands.In order to increase computational efficiency,the far-field part of the integrals are carried out analytically.Solutions in both regions are matched on the interface by the potential and its normal derivative continuity conditions.Based on the present approach,the sum-and difference-frequency potentials are efficiently evaluated and are used to generate the quadratic transfer functions which correlates the incident wave spectrum with second-order forcing spectrum on the column.The sum-frequency QTFs for a TLP column are present,which are compared for some frequency pairs with those from a fully numerical procedure.Satisfactory agreement has been obtained.QTF spectra for a case study TLP column,generated using the semi-analytical solution are presented.Also given are the results for nonlinear wave field around the column.展开更多
This paper presents a universal fifth-order Stokes solution for steady water waves on the basis of potential theory. It uses a global perturbation parameter, considers a depth uniform current, and thus admits the flex...This paper presents a universal fifth-order Stokes solution for steady water waves on the basis of potential theory. It uses a global perturbation parameter, considers a depth uniform current, and thus admits the flexibilities on the definition of the perturbation parameter and on the determination of the wave celerity. The universal solution can be extended to that of Chappelear (1961), confirming the correctness for the universal theory. Furthermore, a particular fifth-order solution is obtained where the wave steepness is used as the perturbation parameter. The applicable range of this solution in shallow depth is analyzed. Comparisons with the Fourier approximated results and with the experimental measurements show that the solution is fairly suited to waves with the Ursell number not exceeding 46.7.展开更多
Contaminants that are floating on the surface of the ocean are subjected to the action of random waves.In the literature,it has been asserted by researchers that the random wave action will lead to a dispersion mechan...Contaminants that are floating on the surface of the ocean are subjected to the action of random waves.In the literature,it has been asserted by researchers that the random wave action will lead to a dispersion mechanism through the induced Stokes drift,and that this dispersion mechanism may have the same order of significance comparable with the others means due to tidal currents and wind.It is investigated whether or not surface floating substances will disperse in the random wave environment due to the induced Stokes drift.An analytical derivation is first performed to obtain the drift velocity under the random waves.From the analysis,it is shown that the drift velocity is a time-independent value that does not possess any fluctuation given a specific wave energy spectrum.Thus,the random wave drift by itself should not have a dispersive effect on the surface floating substances.Experiments were then conducted with small floating objects subjected to P-M spectral waves in a laboratory wave flume,and the experimental results reinforced the conclusion drawn.展开更多
In this paper, the fact is revealed that the surface elevation of the third order Stokes waves in implicit form could have no solution or have simultaneously a trivial one and a singular one on certain conditions. Bas...In this paper, the fact is revealed that the surface elevation of the third order Stokes waves in implicit form could have no solution or have simultaneously a trivial one and a singular one on certain conditions. Based on this fact, the relative breaking width, a more reasonable quantity in agreement with the definition of whitecapping coverage rate, is obtained directly from the assumption that no solution means breaking. The implications of the singular solution existing in the third order stokes waves are also discussed briefly.展开更多
We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous...We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.展开更多
Variational principle for non-vortex, non-linear wave theories is established in this paper. By using this variational principle and related functional minimum condition, the fifth and sixth order Stokes Vaves are giv...Variational principle for non-vortex, non-linear wave theories is established in this paper. By using this variational principle and related functional minimum condition, the fifth and sixth order Stokes Vaves are given as an example and the results are compared with those in Reference (Skjel-breia, 1961).展开更多
We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of th...We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of the viscous shock waves is shown for certain class of large initial perturbation with integral zero which can allow the initial density to have large oscillation. Our analysis relies upon the technique developed by Kanel~ and the continuation argument.展开更多
Interracial internal waves in a three-layer density-stratified fluid are investigated using a singular perturbation method, and third-order asymptotic solutions of the velocity potentials and third-order Stokes wave s...Interracial internal waves in a three-layer density-stratified fluid are investigated using a singular perturbation method, and third-order asymptotic solutions of the velocity potentials and third-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. As expected, the third-order solutions describe the third-order nonlinear modification and the third-order nonlinear interactions between the interracial waves. The wave velocity depends on not only the wave number and the depth of each layer but also on the wave amplitude.展开更多
The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a ...The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a WKBJ-type perturbation approach. Synchronous, superharmonic and in particular subharmonic resonance were selectively excited over the fast varying topography with corresponding wavelengths. For a steady current the dynamical system is autonomous and the possible nonlinear steady states and their stability were investigated. When the current has a small oscillatory component the dynamical system becomes non-autonomous, chaos is now possible.展开更多
Based on the second order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth integrated local horizontal momentum components are derived by use of the charact...Based on the second order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave number spectrum of ocean waves. As an illustrative example, a fully developed wind generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.展开更多
This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave fo...This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function(QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.展开更多
Based on the Stokes wave theory, the capillary-gravity wave and the interfacial internal wave in two-layer constant depth's fluid system are investigated. The fluids are assumed to be incompressible, inviscid and irr...Based on the Stokes wave theory, the capillary-gravity wave and the interfacial internal wave in two-layer constant depth's fluid system are investigated. The fluids are assumed to be incompressible, inviscid and irrotational. The third-order Stokes wave solutions are given by using a perturbation method. The results indicate that the third-order solutions depend on the surface tension, the density and the depth of each layer. As expected, the first-order solutions are the linear theoretical results (the small amplitude wave theoretical results). The second-order and the third-order solutions describe the nonlinear modification and the nonlinear interactions. The nonlinear impact appears not only in the n (n〉~2) times' high frequency components, but also in the low frequency components. It is also noted that the wave velocity depends on the wave number, depth, wave amplitude and surface tension.展开更多
A previous study (Song. 2004. Geophys Res Lett, 31 (15):L15302) of the second-order solutions for random interracial waves is extended in a constant depth, two-layer fluid system with a rigid lid is extended into...A previous study (Song. 2004. Geophys Res Lett, 31 (15):L15302) of the second-order solutions for random interracial waves is extended in a constant depth, two-layer fluid system with a rigid lid is extended into a more general case of two-layer fluid with a top free surface. The rigid boundary condition on the upper surface is replaced by the kinematical and dynamical boundary conditions of a free surface, and the equations describing the random displacements of free surface, density-interface and the associated velocity potentials in the two-layer fluid are solved to the second order using the same expansion technology as that of Song (2004. Geophys Res Lett, 31 (15):L15302). The results show that the interface and the surface will oscillate synchronously, and the wave fields to the first-order both at the free surface and at the density-interface are made up of a linear superposition of many waves with different amplitudes, wave numbers and frequencies. The second-order solutions describe the second-order wave-wave interactions of the surface wave components, the interface wave components and among the surface and the interface wave components. The extended solutions also include special cases obtained by Thorpe for progressive interracial waves (Thorpe. 1968a.Trans R Soc London, 263A:563~614) and standing interracial waves (Thorpe. 1968b. J Fluid Mech, 32:489-528) for the two-layer fluid with a top free surface. Moreover, the solutions reduce to those derived for random surface waves by Sharma and Dean (1979.Ocean Engineering Rep 20) if the density of the upper layer is much smaller than that of the lower layer.展开更多
This Paper improves the existing fifth order Stokes wave theory by using least Square method, and givesthe optimum result in the meaning of minimum error Squares to satisfy the free surface boundary conditions, and th...This Paper improves the existing fifth order Stokes wave theory by using least Square method, and givesthe optimum result in the meaning of minimum error Squares to satisfy the free surface boundary conditions, and thewave profile can be adjusted according to the measured data. This paper also gives a simplified method for derivingthe parameters of the existing fifth order Stokes wave.展开更多
A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly t...A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly to the second-order elastic wave equation.In view of this,based on the first-order CPML absorbing boundary condition,we propose a new CPML(NCPML)boundary which can be directly applied to the second-order wave equation.We first systematically extend the first-order CPML technique into second-order wave equations,neglecting the space-varying characteristics of the partial damping coefficient in the complex-frequency domain,avoiding the generation of convolution in the time domain.We then transform the technique back to the time domain through the inverse Fourier transform.Numerical simulation indicates that the space-varying characteristics of the attenuation factor have little influence on the absorption effect and increase the memory at the same time.A number of numerical examples show that the NCPML proposed in this study is effective in simulating elastic wave propagation,and this algorithm is more efficient and requires less memory allocation than the conventional PML absorbing boundary.展开更多
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFB2601100)the National Natural Science Foundation of China(Grant No.52171246)+4 种基金The Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2019491911)the Open Research Foundation of the State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(Grant No.LP2005)the Science and Technology Innovation Program of Hunan Province(Grant No.2023RC3136)the Natural Science Foundation of Hunan Province(Grant No.2022JJ20041)Educational Science Foundation of Hunan Province(Grant No.23A0265)。
文摘Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects.
文摘The increase of wave energy in electricity production is an objective shared by many countries to meet growing demand and global warming. To analyze devices capable of converting the energy of sea waves into electrical energy, it is important to master the various theories of gravity waves and generation. We will in our work consider a numerical waves tank for an amplitude A=0.5, a wavelength λ=0.25 , an average height H<sub>e</sub>=10 and a Froude number fixed at 1 × 10<sup>5</sup>. Numerical wave channel analysis is used to reproduce the natural phenomenon of wave propagation in an experimental model. Wave makers are usually used to generate waves in the channel. In theory, the influence of an incident wave can be considered, as in the case of our study. In this study, the evolution of the hydrodynamic parameters and the energy transported in one wavelength can be determined by calculation. A change of variable will be done in this work to facilitate the writing of the boundary conditions at the free surface and at the bottom. The nonlinear Stokes theory will be studied in this case in order to provide hydrodynamic solutions through the Navier-Stokes equations to finally deduce the energetic results. To do this, the finite difference method will be used for the hydrodynamic results such as the velocity potential and the free surface elevation and the trapezium method of Newton for the energetic results. Thus, we will determine the energetic potential according to the decrease in the slope of the tank. To do this, we will take as values of beta representing the inverse of the slope of the tank, β=100, β=105, β=110 and β=105. .
基金Project supported by the National Science Fund for Distinguished Young Scholars (Grant No 40425015), the Cooperative Project of Chinese Academy Sciences and the China National 0ffshore oil Corporation ("Behaviours of internal waves and their roles on the marine structures") and the National Natural Science Foundation of China (Grant No10461005).
文摘This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.
文摘In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.
文摘A complete semi-analytical solution is obtained for second-order diffraction of plane bichromatic waves by a fixed truncated circular column.The fluid domain is divided into interior and exterior regions.In the exterior region,the second-order velocity potential is expressed in terms of‘locked-wave’and‘free-wave’ components,both are solved using Fourier and eigenfunction expansions.The re- sulting‘locked wave’potential is expressed by one-dimensional Green's integrals with oscillating integrands.In order to increase computational efficiency,the far-field part of the integrals are carried out analytically.Solutions in both regions are matched on the interface by the potential and its normal derivative continuity conditions.Based on the present approach,the sum-and difference-frequency potentials are efficiently evaluated and are used to generate the quadratic transfer functions which correlates the incident wave spectrum with second-order forcing spectrum on the column.The sum-frequency QTFs for a TLP column are present,which are compared for some frequency pairs with those from a fully numerical procedure.Satisfactory agreement has been obtained.QTF spectra for a case study TLP column,generated using the semi-analytical solution are presented.Also given are the results for nonlinear wave field around the column.
基金supported by the Jiangsu Province Natural Science Foundation for the Young Scholars(Grant No.BK20130827)the National Natural Science Foundation of China(Grant Nos.41076008 and 51479055)
文摘This paper presents a universal fifth-order Stokes solution for steady water waves on the basis of potential theory. It uses a global perturbation parameter, considers a depth uniform current, and thus admits the flexibilities on the definition of the perturbation parameter and on the determination of the wave celerity. The universal solution can be extended to that of Chappelear (1961), confirming the correctness for the universal theory. Furthermore, a particular fifth-order solution is obtained where the wave steepness is used as the perturbation parameter. The applicable range of this solution in shallow depth is analyzed. Comparisons with the Fourier approximated results and with the experimental measurements show that the solution is fairly suited to waves with the Ursell number not exceeding 46.7.
基金The State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering Research Foundation of China under contract No.2015491311
文摘Contaminants that are floating on the surface of the ocean are subjected to the action of random waves.In the literature,it has been asserted by researchers that the random wave action will lead to a dispersion mechanism through the induced Stokes drift,and that this dispersion mechanism may have the same order of significance comparable with the others means due to tidal currents and wind.It is investigated whether or not surface floating substances will disperse in the random wave environment due to the induced Stokes drift.An analytical derivation is first performed to obtain the drift velocity under the random waves.From the analysis,it is shown that the drift velocity is a time-independent value that does not possess any fluctuation given a specific wave energy spectrum.Thus,the random wave drift by itself should not have a dispersive effect on the surface floating substances.Experiments were then conducted with small floating objects subjected to P-M spectral waves in a laboratory wave flume,and the experimental results reinforced the conclusion drawn.
文摘In this paper, the fact is revealed that the surface elevation of the third order Stokes waves in implicit form could have no solution or have simultaneously a trivial one and a singular one on certain conditions. Based on this fact, the relative breaking width, a more reasonable quantity in agreement with the definition of whitecapping coverage rate, is obtained directly from the assumption that no solution means breaking. The implications of the singular solution existing in the third order stokes waves are also discussed briefly.
文摘We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.
文摘Variational principle for non-vortex, non-linear wave theories is established in this paper. By using this variational principle and related functional minimum condition, the fifth and sixth order Stokes Vaves are given as an example and the results are compared with those in Reference (Skjel-breia, 1961).
基金supported by"the Fundamental Research Funds for the Central Universities"
文摘We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of the viscous shock waves is shown for certain class of large initial perturbation with integral zero which can allow the initial density to have large oscillation. Our analysis relies upon the technique developed by Kanel~ and the continuation argument.
基金supported by the Natural Science Foundation of Inner Mongolia,China(Grant No 200711020116)Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(Grant No KLOCAW0805)+1 种基金the Key Program of the Scientific Research Plan of Inner Mongolia University of Technology,China(Grant No ZD200608)National Science Fund for Distinguished Young Scholars of China(Grant No 40425015)
文摘Interracial internal waves in a three-layer density-stratified fluid are investigated using a singular perturbation method, and third-order asymptotic solutions of the velocity potentials and third-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. As expected, the third-order solutions describe the third-order nonlinear modification and the third-order nonlinear interactions between the interracial waves. The wave velocity depends on not only the wave number and the depth of each layer but also on the wave amplitude.
文摘The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a WKBJ-type perturbation approach. Synchronous, superharmonic and in particular subharmonic resonance were selectively excited over the fast varying topography with corresponding wavelengths. For a steady current the dynamical system is autonomous and the possible nonlinear steady states and their stability were investigated. When the current has a small oscillatory component the dynamical system becomes non-autonomous, chaos is now possible.
文摘Based on the second order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave number spectrum of ocean waves. As an illustrative example, a fully developed wind generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.
基金supported by the National Natural Science Foundation of China(Nos.51239008 and 51279130)
文摘This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function(QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.
基金financially supported by the Science Research Project of Inner Mongolia University of Technology,China(Grant No.ZD201613)
文摘Based on the Stokes wave theory, the capillary-gravity wave and the interfacial internal wave in two-layer constant depth's fluid system are investigated. The fluids are assumed to be incompressible, inviscid and irrotational. The third-order Stokes wave solutions are given by using a perturbation method. The results indicate that the third-order solutions depend on the surface tension, the density and the depth of each layer. As expected, the first-order solutions are the linear theoretical results (the small amplitude wave theoretical results). The second-order and the third-order solutions describe the nonlinear modification and the nonlinear interactions. The nonlinear impact appears not only in the n (n〉~2) times' high frequency components, but also in the low frequency components. It is also noted that the wave velocity depends on the wave number, depth, wave amplitude and surface tension.
基金supported by the National Science Foundation for Distinguished Young Scholars of China under contract No.40425015the Cooperative Project of Chinese Academy Sciences and the China National 0ffshore 0il Corporation("Behaviours of internal waves and their roles on the marine stuctures").
文摘A previous study (Song. 2004. Geophys Res Lett, 31 (15):L15302) of the second-order solutions for random interracial waves is extended in a constant depth, two-layer fluid system with a rigid lid is extended into a more general case of two-layer fluid with a top free surface. The rigid boundary condition on the upper surface is replaced by the kinematical and dynamical boundary conditions of a free surface, and the equations describing the random displacements of free surface, density-interface and the associated velocity potentials in the two-layer fluid are solved to the second order using the same expansion technology as that of Song (2004. Geophys Res Lett, 31 (15):L15302). The results show that the interface and the surface will oscillate synchronously, and the wave fields to the first-order both at the free surface and at the density-interface are made up of a linear superposition of many waves with different amplitudes, wave numbers and frequencies. The second-order solutions describe the second-order wave-wave interactions of the surface wave components, the interface wave components and among the surface and the interface wave components. The extended solutions also include special cases obtained by Thorpe for progressive interracial waves (Thorpe. 1968a.Trans R Soc London, 263A:563~614) and standing interracial waves (Thorpe. 1968b. J Fluid Mech, 32:489-528) for the two-layer fluid with a top free surface. Moreover, the solutions reduce to those derived for random surface waves by Sharma and Dean (1979.Ocean Engineering Rep 20) if the density of the upper layer is much smaller than that of the lower layer.
文摘This Paper improves the existing fifth order Stokes wave theory by using least Square method, and givesthe optimum result in the meaning of minimum error Squares to satisfy the free surface boundary conditions, and thewave profile can be adjusted according to the measured data. This paper also gives a simplified method for derivingthe parameters of the existing fifth order Stokes wave.
基金supported by the National Science and Technology Major Special Sub-project of China(No.2016ZX05024-001-008)the National Natural Science Foundation Joint Fund Prcject of China(No.U1562215).
文摘A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly to the second-order elastic wave equation.In view of this,based on the first-order CPML absorbing boundary condition,we propose a new CPML(NCPML)boundary which can be directly applied to the second-order wave equation.We first systematically extend the first-order CPML technique into second-order wave equations,neglecting the space-varying characteristics of the partial damping coefficient in the complex-frequency domain,avoiding the generation of convolution in the time domain.We then transform the technique back to the time domain through the inverse Fourier transform.Numerical simulation indicates that the space-varying characteristics of the attenuation factor have little influence on the absorption effect and increase the memory at the same time.A number of numerical examples show that the NCPML proposed in this study is effective in simulating elastic wave propagation,and this algorithm is more efficient and requires less memory allocation than the conventional PML absorbing boundary.