Based on a recently formulated unified theory of coherence and polarization, a method is described to study turbulence-induced changes in the polarization, the coherence and the spectrum of partially coherent electrom...Based on a recently formulated unified theory of coherence and polarization, a method is described to study turbulence-induced changes in the polarization, the coherence and the spectrum of partially coherent electromagnetic beams on propagation. The electromagnetic Gaussian Schell-model beam is taken as a typical example of partially coherent electromagnetic beams, and the closed-form expressions for the degree of polarization, the degree of coherence and the spectrum of electromagnetic Gaussian Schell-model beams propagating through atmospheric turbulence are derived in the quadratic approximation of Rytov's phase structure function. Some interesting results are obtained, which are illustrated by numerical examples and are explained in physics.展开更多
Taking partially coherent cosh-Gaussian (ChG) beams as an example of more general partially coherent beams, we have studied the spectral degree of coherence of partially coherent ChG beams in the far field. It is sh...Taking partially coherent cosh-Gaussian (ChG) beams as an example of more general partially coherent beams, we have studied the spectral degree of coherence of partially coherent ChG beams in the far field. It is shown that, unlike Gaussian Schell-model (GSM) beams, in the strict sense there do not exist two partially coherent ChG beams which can generate far fields with the same spectral degree of coherence. However, under certain conditions it is possible to find two partially coherent ChG beams with the same spectral degree of coherence in the far field.展开更多
Numerical simulations have been performed in time-developing plane mixing layers of the viscoelastic second-order fluids with pseudo-spectral method. Roll-up, pairing and merging of large eddies were examined at high ...Numerical simulations have been performed in time-developing plane mixing layers of the viscoelastic second-order fluids with pseudo-spectral method. Roll-up, pairing and merging of large eddies were examined at high Reynolds numbers and low Deborah numbers. The effect of viscoelastics on the evolution of the large coherent structure was shown by making a comparison between the second-order and Newtonian fluids at the same Reynolds numbers.展开更多
The measurement of the second-order degree of coherence [g(2)(t)] is one of the important methods used to study the dynamical evolution of photon-matter interaction systems. Here, we use a nitrogen-vacancy center ...The measurement of the second-order degree of coherence [g(2)(t)] is one of the important methods used to study the dynamical evolution of photon-matter interaction systems. Here, we use a nitrogen-vacancy center in a diamond to compare the measurement of g(2) (t) with two methods. One is the prototype measurement process with a tunable delay. The other is a start-stop process based on the time-to-amplitude conversion (TAC) and multichannel analyzer (MCA) system, which is usually applied to achieve efficient measurements. The divergence in the measurement results is observed when the delay time is comparable with the mean interval time between two neighboring detected photons. Moreover, a correction function is presented to correct the results from the TAC-MCA system to the genuine g(2)(t). Such a correction method will provide a way to study the dynamics in photonic systems for quantum information techniques.展开更多
The degree of coherence(DOC)function that characterizes the second-order correlations at any two points in a light field is shown to provide a new degree of freedom for carrying information.As a rule,the DOC varies al...The degree of coherence(DOC)function that characterizes the second-order correlations at any two points in a light field is shown to provide a new degree of freedom for carrying information.As a rule,the DOC varies along the beam propagation path,preventing from the efficient information recovery.In this paper,we report that when a partially coher-ent beam carrying a cross phase propagates in free space,in a paraxial optical system or in a turbulent medium,the modulus of the far-field(focal plane)DOC acquires the same value as it has in the source plane.This unique propaga-tion feature is employed in a novel protocol for far-field imaging via the DOC,applicable to transmission in both free-space and turbulence.The advantages of the proposed approach are the confidentiality and resistance to turbulence,as well as the weaker requirement for the beam alignment accuracy.We demonstrate the feasibility and the robustness of the far-field imaging via the DOC in the turbulent media through both the experiment and the numerical simulations.Our findings have potential applications in optical imaging and remote sensing in natural environments,in the presence of op-tical turbulence.展开更多
The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for ...The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for MSOL systems, sufficient and necessary conditions for the design of the type of generalized Luenberger observers were given under the assumption of controllability and observability of the MSOL system. Based on the proposed conditions and the right coprime factorization of the system, a parametric approach to the design of such type of observers was presented. The proposed approach provides all the degrees of design freedom, which can be further utilized to achieve additional system specifications. A spring-mass system was utilized to show the effect of the proposed method.展开更多
The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communicat...The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communication.The spatial-coherence structure,that characterizes partially coherent fields,provides a new degree of freedom for carrying information.However,due to the influence of the complex transmission environment,the spatial-coherence structure is severely damaged during the propagation path,which undoubtedly limits its ability to transmit information.Here,we realize the robust far-field orbital angular momentum(OAM)transmission and detection by modulating the spatial-coherence structure of a partially coherent vortex beam with the help of the cross-phase.The cross-phase enables the OAM information,quantified by the topological charge,hidden in the spatial-coherence structure can be stably transmitted to the far field and can resist the influence of obstructions and turbulence within the communication link.This is due to the self-reconstruction property of the spatial-coherence structure embedded with the cross-phase.We demonstrate experimentally that the topological charge information can be recognized well by measuring the spatial-coherence structure in the far field,exhibiting a set of distinct and separated dark rings even under amplitude and phase perturbations.Our findings open a door for robust optical signal transmission through the complex environment and may find application in optical communication through a turbulent atmosphere.展开更多
The second-order and fourth-order statistical moments of the speckle field from a diffuse target in atmospheric turbulence are studied which have great influence on the performance of lidar systems. By expanding a gen...The second-order and fourth-order statistical moments of the speckle field from a diffuse target in atmospheric turbulence are studied which have great influence on the performance of lidar systems. By expanding a general rotationally symmetric beam as a sum of Gaussian-Schell model (GSM) beams, the mean intensity of the general beam propagating over a distance in an atmospheric turbulence is formulated. Expressions for the degree of coherence (DOC) and the normalized intensity variance of the scattered field of a general beam from a rough surface in turbulence are derived based on the extended Huygens-Fresnel principle. The general expressions reduce to the well-known forms for a GSM beam. Another example for the general beam used in this paper is the collimated flat-topped beam. The results of both kinds of beams show that the intensity profile on the target plane is a key factor affecting the statistical characteristics of the speckle field. A larger beam spot on the target plane induces a smaller coherence length and a smaller normalized intensity variance of the received field. As turbulence gets stronger, the coherence length becomes smaller, and the normalized intensity variance firstly increases and declines to unity finally.展开更多
The feasibility of applying optical coherence tomography (OCT) in determining the degree of myocardial ischemia-reperfusion injury is assessed. The left anterior descending coronary artery of 90 Sprague-Dawley rats ...The feasibility of applying optical coherence tomography (OCT) in determining the degree of myocardial ischemia-reperfusion injury is assessed. The left anterior descending coronary artery of 90 Sprague-Dawley rats are ligated and reperfused at different times. The total attenuation coefficient obtained from the OCT images in the experimental group keeps increasing with reperfusion time and highly correlates with the histopathological characteristics (P 〈 0.01). We present evidence proving the feasibility of using OCT for evaluating myocardial ischemia reperfusion.展开更多
We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed b...We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed by the exponential mapping method based on the tangent subspace of the Grassmann manifold. This exponential mapping method can transform the coherent space time codes (C-STC) into the N-USTC on the Grassmann manifold. We infered an universal framework of constructing a C-STC that is designed by using the algebraic number theory and has full rate and full diversity (FRFD) for t symbol periods and same antennas, where M, N, T, t are general positive integer. We discussed the constraint condition that the exponential mapping has only one solution, from which we presented a approach of searching the optimum adjustive factor αopt that can generate an optimum noncoherent codeword. For different code parameters M, N, T, t and the optimum adjustive factor αopt, we gave the simulation results of the several N-USTCs.展开更多
We measure the electromagnetic degree of temporal coherence and the associated coherence time for quasi-monochromatic unpolarized light beams emitted by an LED, a filtered halogen lamp, and a multimode He–Ne laser.Th...We measure the electromagnetic degree of temporal coherence and the associated coherence time for quasi-monochromatic unpolarized light beams emitted by an LED, a filtered halogen lamp, and a multimode He–Ne laser.The method is based on observing at the output of a Michelson interferometer the visibilities(contrasts) of the intensity and polarization-state modulations expressed in terms of the Stokes parameters. The results are in good agreement with those deduced directly from the source spectra. The measurements are repeated after passing the beams through a linear polarizer so as to elucidate the role of polarization in electromagnetic coherence. While the polarizer varies the equal-time degree of coherence consistently with the theoretical predictions and alters the inner structure of the coherence matrix, the coherence time remains almost unchanged when the light varies from unpolarized to polarized. The results are important in the areas of applications dealing with physical optics and electromagnetic interference.展开更多
Coherence is one of the most salient features of a laser beam,and laser beams which are not completely coherent,the so-called partially coherent beams,are preferred in many applications.The degrees of coherence of con...Coherence is one of the most salient features of a laser beam,and laser beams which are not completely coherent,the so-called partially coherent beams,are preferred in many applications.The degrees of coherence of conventional spatial partially coherent beams can be described by Gaussian distributions.Currently,more and more attention is being paid to partially coherent beams with prescribed degrees of coherence due to their extraordinary optical properties,such as self-focusing,self-shaping,selfsplitting,periodicity reciprocity,and super-strong reconstruction. Manipulating the structure of the degree of a partially coherent beam provides a novel way for modulating and controlling its propagation properties and is useful in beam shaping,free-space optical communications,optical trapping,optical encryption and image or information transfer through adverse inhomogeneous environments.In this paper,we present a review on the recent advances in partially coherent beams with prescribed degrees of coherence.展开更多
Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous...Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous compensation of the range and Doppler migrations in complex clutter back-ground,and at the same time improving the calculation efficiency has become an urgent problem to be solved.The sparse transformation theory is introduced to LTCI in this paper,and a non-parametric searching sparse LTCI(SLTCI)based maneuvering target detection method is proposed.This method performs time reversal(TR)and second-order Keystone transform(SKT)in the range frequency&slow-time data to complete high-order range walk compensation,and achieves the coherent integra-tion of maneuvering target across range and Doppler units via the robust sparse fractional Fourier transform(RSFRFT).It can compensate for the nonlinear range migration caused by high-order motion.S-band and X-band radar data measured in sea clutter background are used to verify the detection performance of the proposed method,which can achieve better detection performance of maneuvering targets with less computational burden compared with several popular integration methods.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 60778048)
文摘Based on a recently formulated unified theory of coherence and polarization, a method is described to study turbulence-induced changes in the polarization, the coherence and the spectrum of partially coherent electromagnetic beams on propagation. The electromagnetic Gaussian Schell-model beam is taken as a typical example of partially coherent electromagnetic beams, and the closed-form expressions for the degree of polarization, the degree of coherence and the spectrum of electromagnetic Gaussian Schell-model beams propagating through atmospheric turbulence are derived in the quadratic approximation of Rytov's phase structure function. Some interesting results are obtained, which are illustrated by numerical examples and are explained in physics.
基金supported by the National Natural Science Foundation of China (Grant Nos 10574097 and 10874125)
文摘Taking partially coherent cosh-Gaussian (ChG) beams as an example of more general partially coherent beams, we have studied the spectral degree of coherence of partially coherent ChG beams in the far field. It is shown that, unlike Gaussian Schell-model (GSM) beams, in the strict sense there do not exist two partially coherent ChG beams which can generate far fields with the same spectral degree of coherence. However, under certain conditions it is possible to find two partially coherent ChG beams with the same spectral degree of coherence in the far field.
文摘Numerical simulations have been performed in time-developing plane mixing layers of the viscoelastic second-order fluids with pseudo-spectral method. Roll-up, pairing and merging of large eddies were examined at high Reynolds numbers and low Deborah numbers. The effect of viscoelastics on the evolution of the large coherent structure was shown by making a comparison between the second-order and Newtonian fluids at the same Reynolds numbers.
基金supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(No.XDB01030200)the National Natural Science Foundation of China(Nos.11374290,91536219,and 61522508)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘The measurement of the second-order degree of coherence [g(2)(t)] is one of the important methods used to study the dynamical evolution of photon-matter interaction systems. Here, we use a nitrogen-vacancy center in a diamond to compare the measurement of g(2) (t) with two methods. One is the prototype measurement process with a tunable delay. The other is a start-stop process based on the time-to-amplitude conversion (TAC) and multichannel analyzer (MCA) system, which is usually applied to achieve efficient measurements. The divergence in the measurement results is observed when the delay time is comparable with the mean interval time between two neighboring detected photons. Moreover, a correction function is presented to correct the results from the TAC-MCA system to the genuine g(2)(t). Such a correction method will provide a way to study the dynamics in photonic systems for quantum information techniques.
文摘The degree of coherence(DOC)function that characterizes the second-order correlations at any two points in a light field is shown to provide a new degree of freedom for carrying information.As a rule,the DOC varies along the beam propagation path,preventing from the efficient information recovery.In this paper,we report that when a partially coher-ent beam carrying a cross phase propagates in free space,in a paraxial optical system or in a turbulent medium,the modulus of the far-field(focal plane)DOC acquires the same value as it has in the source plane.This unique propaga-tion feature is employed in a novel protocol for far-field imaging via the DOC,applicable to transmission in both free-space and turbulence.The advantages of the proposed approach are the confidentiality and resistance to turbulence,as well as the weaker requirement for the beam alignment accuracy.We demonstrate the feasibility and the robustness of the far-field imaging via the DOC in the turbulent media through both the experiment and the numerical simulations.Our findings have potential applications in optical imaging and remote sensing in natural environments,in the presence of op-tical turbulence.
文摘The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for MSOL systems, sufficient and necessary conditions for the design of the type of generalized Luenberger observers were given under the assumption of controllability and observability of the MSOL system. Based on the proposed conditions and the right coprime factorization of the system, a parametric approach to the design of such type of observers was presented. The proposed approach provides all the degrees of design freedom, which can be further utilized to achieve additional system specifications. A spring-mass system was utilized to show the effect of the proposed method.
基金National Key Research and Development Program of China (2022YFA1404800,2019YFA0705000)National Natural Science Foundation of China (12104264,12192254,92250304,and 12374311)+2 种基金China Postdoctoral Science Foundation (2022T150392)Natural Science Foundation of Shandong Province (ZR2021QA014 and ZR2023YQ006)Qingchuang Science and Technology Plan of Shandong Province (2022KJ246).
文摘The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communication.The spatial-coherence structure,that characterizes partially coherent fields,provides a new degree of freedom for carrying information.However,due to the influence of the complex transmission environment,the spatial-coherence structure is severely damaged during the propagation path,which undoubtedly limits its ability to transmit information.Here,we realize the robust far-field orbital angular momentum(OAM)transmission and detection by modulating the spatial-coherence structure of a partially coherent vortex beam with the help of the cross-phase.The cross-phase enables the OAM information,quantified by the topological charge,hidden in the spatial-coherence structure can be stably transmitted to the far field and can resist the influence of obstructions and turbulence within the communication link.This is due to the self-reconstruction property of the spatial-coherence structure embedded with the cross-phase.We demonstrate experimentally that the topological charge information can be recognized well by measuring the spatial-coherence structure in the far field,exhibiting a set of distinct and separated dark rings even under amplitude and phase perturbations.Our findings open a door for robust optical signal transmission through the complex environment and may find application in optical communication through a turbulent atmosphere.
基金supported by the Fundamental Research Funds for the Central Universities of China(Grant No.K5051207001)the National Natural Science Foundation of China(Grant Nos.61172031 and 61271110)
文摘The second-order and fourth-order statistical moments of the speckle field from a diffuse target in atmospheric turbulence are studied which have great influence on the performance of lidar systems. By expanding a general rotationally symmetric beam as a sum of Gaussian-Schell model (GSM) beams, the mean intensity of the general beam propagating over a distance in an atmospheric turbulence is formulated. Expressions for the degree of coherence (DOC) and the normalized intensity variance of the scattered field of a general beam from a rough surface in turbulence are derived based on the extended Huygens-Fresnel principle. The general expressions reduce to the well-known forms for a GSM beam. Another example for the general beam used in this paper is the collimated flat-topped beam. The results of both kinds of beams show that the intensity profile on the target plane is a key factor affecting the statistical characteristics of the speckle field. A larger beam spot on the target plane induces a smaller coherence length and a smaller normalized intensity variance of the received field. As turbulence gets stronger, the coherence length becomes smaller, and the normalized intensity variance firstly increases and declines to unity finally.
基金supported by the Medical Innovation Topics of Health Department of Fujian Province under Grant No.2009-CX-1
文摘The feasibility of applying optical coherence tomography (OCT) in determining the degree of myocardial ischemia-reperfusion injury is assessed. The left anterior descending coronary artery of 90 Sprague-Dawley rats are ligated and reperfused at different times. The total attenuation coefficient obtained from the OCT images in the experimental group keeps increasing with reperfusion time and highly correlates with the histopathological characteristics (P 〈 0.01). We present evidence proving the feasibility of using OCT for evaluating myocardial ischemia reperfusion.
文摘We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed by the exponential mapping method based on the tangent subspace of the Grassmann manifold. This exponential mapping method can transform the coherent space time codes (C-STC) into the N-USTC on the Grassmann manifold. We infered an universal framework of constructing a C-STC that is designed by using the algebraic number theory and has full rate and full diversity (FRFD) for t symbol periods and same antennas, where M, N, T, t are general positive integer. We discussed the constraint condition that the exponential mapping has only one solution, from which we presented a approach of searching the optimum adjustive factor αopt that can generate an optimum noncoherent codeword. For different code parameters M, N, T, t and the optimum adjustive factor αopt, we gave the simulation results of the several N-USTCs.
文摘We measure the electromagnetic degree of temporal coherence and the associated coherence time for quasi-monochromatic unpolarized light beams emitted by an LED, a filtered halogen lamp, and a multimode He–Ne laser.The method is based on observing at the output of a Michelson interferometer the visibilities(contrasts) of the intensity and polarization-state modulations expressed in terms of the Stokes parameters. The results are in good agreement with those deduced directly from the source spectra. The measurements are repeated after passing the beams through a linear polarizer so as to elucidate the role of polarization in electromagnetic coherence. While the polarizer varies the equal-time degree of coherence consistently with the theoretical predictions and alters the inner structure of the coherence matrix, the coherence time remains almost unchanged when the light varies from unpolarized to polarized. The results are important in the areas of applications dealing with physical optics and electromagnetic interference.
基金supported by the National Natural Science Fund for Distinguished Young Scholar(11525418)the National Natural Science Foundation of China(11274005&11474213)+1 种基金the Project of the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutionsthe Innovation Plan for Graduate Students in the Universities of Jiangsu Province(KYZZ16_0079)
文摘Coherence is one of the most salient features of a laser beam,and laser beams which are not completely coherent,the so-called partially coherent beams,are preferred in many applications.The degrees of coherence of conventional spatial partially coherent beams can be described by Gaussian distributions.Currently,more and more attention is being paid to partially coherent beams with prescribed degrees of coherence due to their extraordinary optical properties,such as self-focusing,self-shaping,selfsplitting,periodicity reciprocity,and super-strong reconstruction. Manipulating the structure of the degree of a partially coherent beam provides a novel way for modulating and controlling its propagation properties and is useful in beam shaping,free-space optical communications,optical trapping,optical encryption and image or information transfer through adverse inhomogeneous environments.In this paper,we present a review on the recent advances in partially coherent beams with prescribed degrees of coherence.
基金supported by the National Natural Science Foundation of China(62222120,61871391,U1933135)Shandong Provincial Natural Science Foundation(ZR2021YQ43).
文摘Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous compensation of the range and Doppler migrations in complex clutter back-ground,and at the same time improving the calculation efficiency has become an urgent problem to be solved.The sparse transformation theory is introduced to LTCI in this paper,and a non-parametric searching sparse LTCI(SLTCI)based maneuvering target detection method is proposed.This method performs time reversal(TR)and second-order Keystone transform(SKT)in the range frequency&slow-time data to complete high-order range walk compensation,and achieves the coherent integra-tion of maneuvering target across range and Doppler units via the robust sparse fractional Fourier transform(RSFRFT).It can compensate for the nonlinear range migration caused by high-order motion.S-band and X-band radar data measured in sea clutter background are used to verify the detection performance of the proposed method,which can achieve better detection performance of maneuvering targets with less computational burden compared with several popular integration methods.