期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Symmetries and variational calculation of discrete Hamiltonian systems 被引量:1
1
作者 夏丽莉 陈立群 +1 位作者 傅景礼 吴旌贺 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期192-198,共7页
We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discre... We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discrete Lagrangian in phase space. The numerical calculations of a two-degree-of-freedom nonlinear harmonic oscillator show that the difference discrete variational method preserves the exactness and the invariant quantity. 展开更多
关键词 discrete hamiltonian systems discrete variational integrators SYMMETRY conserved quantity
下载PDF
Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems
2
作者 王性忠 付昊 傅景礼 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期26-31,共6页
This paper focuses on studying Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems. Firstly, the discrete generalized Hamiltonian canonical equations and discrete energy equation of no... This paper focuses on studying Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems. Firstly, the discrete generalized Hamiltonian canonical equations and discrete energy equation of nonholonomic Hamiltonian systems are derived from discrete Hamiltonian action. Secondly, the determining equations and structure equation of Lie symmetry of the system are obtained. Thirdly, the Lie theorems and the conservation quantities are given for the discrete nonholonomic Hamiltonian systems. Finally, an example is discussed to illustrate the application of the results. 展开更多
关键词 Lie symmetry nonholonomic constraint discrete hamiltonian system conserved quan-tity
下载PDF
Two new discrete integrable systems 被引量:1
3
作者 陈晓红 张鸿庆 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期63-66,共4页
In this paper,we focus on the construction of new(1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra A 1.By designing two new(1+1)-dimensional discrete spectral problems,two n... In this paper,we focus on the construction of new(1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra A 1.By designing two new(1+1)-dimensional discrete spectral problems,two new discrete integrable systems are obtained,namely,a 2-field lattice hierarchy and a 3-field lattice hierarchy.When deriving the two new discrete integrable systems,we find the generalized relativistic Toda lattice hierarchy and the generalized modified Toda lattice hierarchy.Moreover,we also obtain the Hamiltonian structures of the two lattice hierarchies by means of the discrete trace identity. 展开更多
关键词 discrete integrable system hamiltonian structure loop algebra
下载PDF
Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices 被引量:3
4
作者 夏丽莉 陈立群 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期19-25,共7页
The Noether conserved quantities and the Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices are studied. The generalized Hamiltonian equations of the systems are given on the ba... The Noether conserved quantities and the Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices are studied. The generalized Hamiltonian equations of the systems are given on the basis of the transformation operators in the space of discrete Hamiltonians. The Lie transformations acting on the lattice, as well as the equations and the determining equations of the Lie symmetries are obtained for the nonholonomic Hamiltonian systems. The discrete analogue of the Noether conserved quantity is constructed by using the Lie point symmetries. An example is discussed to illustrate the results. 展开更多
关键词 discrete nonholonomic hamiltonian systems Lie point symmetry Noether conservedquantity
下载PDF
Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control
5
作者 Andrea Brugnoli Ghislain Haine +1 位作者 Anass Serhani Xavier Vasseur 《Journal of Applied Mathematics and Physics》 2021年第6期1278-1321,共44页
We consider the design of structure-preserving discretization methods for the solution of systems of boundary controlled Partial Differential Equations (PDEs) thanks to the port-Hamiltonian formalism. We first provide... We consider the design of structure-preserving discretization methods for the solution of systems of boundary controlled Partial Differential Equations (PDEs) thanks to the port-Hamiltonian formalism. We first provide a novel general structure of infinite-dimensional port-Hamiltonian systems (pHs) for which the Partitioned Finite Element Method (PFEM) straightforwardly applies. The proposed strategy is applied to abstract multidimensional linear hyperbolic and parabolic systems of PDEs. Then we show that instructional model problems based on the wave equation, Mindlin equation and heat equation fit within this unified framework. Secondly, we introduce the ongoing project SCRIMP (Simulation and Control of Interactions in Multi-Physics) developed for the numerical simulation of infinite-dimensional pHs. SCRIMP notably relies on the FEniCS open-source computing platform for the finite element spatial discretization. Finally, we illustrate how to solve the considered model problems within this framework by carefully explaining the methodology. As additional support, companion interactive Jupyter notebooks are available. 展开更多
关键词 Port-hamiltonian systems Partial Differential Equations Boundary Control Structure-Preserving discretization Finite Element Method
下载PDF
Homoclinic orbits of first order discrete Hamiltonian systems with super linear terms 被引量:4
6
作者 CHEN WenXiong YANG MinBo DING YanHeng 《Science China Mathematics》 SCIE 2011年第12期2583-2596,共14页
In this paper we consider the first order discrete Hamiltonian systems {x1(n+1)-x1(n)=Hx2(n,x(n)),x2(n)-x2(n-1)=Hx1(n,x(n)),where x(n) = (x2(n)x1(n))∑ R^2N, H(n,z) = 1/2S(n)z. z + R(n,z... In this paper we consider the first order discrete Hamiltonian systems {x1(n+1)-x1(n)=Hx2(n,x(n)),x2(n)-x2(n-1)=Hx1(n,x(n)),where x(n) = (x2(n)x1(n))∑ R^2N, H(n,z) = 1/2S(n)z. z + R(n,z) is periodic in n and superlinear as {z} →4 ∞. We prove the existence and infinitely many (geometrically distinct) homoclonic orbits of the system by critical point theorems for strongly indefinite functionals. 展开更多
关键词 homoclinic orbits first order discrete hamiltonian systems super linear critical points
原文传递
Infinitely Many Periodic Solutions for a Class of Second-order Hamiltonian Systems 被引量:4
7
作者 Ming-hai YANG Yue-fen CHEN Yan-fang XUE 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2016年第1期231-238,共8页
In this paper we study the existence of infinitely many periodic solutions for second-order Hamiltonian systems{ü(t)+A(t)u(t)+▽F(t,u(t))=0,u(0)-u(T)=u^·(0)-u^·(T)=0,where F(t,u) i... In this paper we study the existence of infinitely many periodic solutions for second-order Hamiltonian systems{ü(t)+A(t)u(t)+▽F(t,u(t))=0,u(0)-u(T)=u^·(0)-u^·(T)=0,where F(t,u) is even in u,and ▽(t,u) is of sublinear growth at infinity and satisfies the Ahmad-Lazer-Paul condition. 展开更多
关键词 second-order hamiltonian systems periodic solutions Fountain theorem
原文传递
Homoclinic Solutions for a Class of Second Order Discrete Hamiltonian Systems 被引量:2
8
作者 Xian Hua TANG Xiao Yan LIN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第3期609-622,共14页
Consider the second order discrete Hamiltonian systems
关键词 Homoclinic solution discrete hamiltonian system critical point
原文传递
A Few Discrete Lattice Systems and Their Hamiltonian Structures,Conservation Laws
9
作者 郭秀荣 张玉峰 +1 位作者 张祥芝 岳嵘 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第4期396-406,共11页
With the help of three shift operators and r-matrix theory, a few discrete lattice systems are obtained which can be reduced to the well-known Toda lattice equation with a constraint whose Hamiltonian structures are g... With the help of three shift operators and r-matrix theory, a few discrete lattice systems are obtained which can be reduced to the well-known Toda lattice equation with a constraint whose Hamiltonian structures are generated by Poisson tensors of some induced Lie–Poisson bracket. The recursion operators of these lattice systems are constructed starting from Lax representations. Finally, reducing the given shift operators to get a simpler one and its expanding shift operators, we produce a lattice system with three vector fields whose recursion operator is given. Furthermore,we reduce the lattice system with three vector fields to get a lattice system whose Lax pair and conservation laws are obtained, respectively. 展开更多
关键词 discrete lattice system R-MATRIX hamiltonian structure
原文传递
二阶离散Hamiltonian系统的多重变号周期解(英文) 被引量:5
10
作者 贺铁山 陈文革 雷友发 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期462-466,共5页
研究了二阶非自治离散Hamilton系统多重变号周期解的存在性问题.在非线性项是奇函数的条件下,将这类Ham-ilton系统的变号周期解转化为定义在一个适当空间上泛函的临界点,然后利用Morse理论中的三临界点定理,建立了此类系统至少2个变号... 研究了二阶非自治离散Hamilton系统多重变号周期解的存在性问题.在非线性项是奇函数的条件下,将这类Ham-ilton系统的变号周期解转化为定义在一个适当空间上泛函的临界点,然后利用Morse理论中的三临界点定理,建立了此类系统至少2个变号周期解的存在性结果,并举例说明了所获得的主要结果是有效的. 展开更多
关键词 变号周期解 离散HAMILTON系统 临界点
下载PDF
二阶非自治离散Hamiltonian系统的多重周期解 被引量:3
11
作者 张申贵 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第9期13-18,共6页
研究了二阶非自治离散Hamiltonian系统周期解的存在性.在非线性项是线性增长时,将这类Hamiltonian系统的周期解转化为定义在一个适当空间上泛函的临界点,然后利用临界点理论建立此类系统周期解的存在性结果.
关键词 二阶离散hamiltonian系统 线性增长 周期解 临界点
下载PDF
一类非自治离散Hamiltonian系统的周期解 被引量:1
12
作者 张申贵 《徐州师范大学学报(自然科学版)》 CAS 2011年第1期31-34,共4页
研究了一阶非自治离散Hamiltonian系统周期解的存在性.在非线性项是线性增长条件时,将这类Hamilto-nian系统的周期解转化为定义在一个适当空间上泛函的临界点,然后利用临界点理论中的鞍点定理,建立了此类系统周期解的存在性结果.
关键词 一阶离散hamiltonian系统 线性增长条件 周期解 临界点
下载PDF
一类次线性离散Hamiltonian系统的周期解
13
作者 张环环 《兰州文理学院学报(自然科学版)》 2015年第2期23-26,42,共5页
研究非自治离散Hamiltonian系统周期解的存在性问题.在非线性项次线性增长时,将这类系统的周期解转化为定义在一个适当空间上泛函的临界点,然后利用临界点理论建立了此类系统周期解的存在性结果.
关键词 一阶离散hamiltonian系统 次线性 临界点
下载PDF
有向哈密顿回路问题的一个充分条件及其多项式验证算法
14
作者 曹卫华 刘富春 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第3期555-563,共9页
利用自动机理论研究有向哈密顿回路问题,提出一个多项式复杂度的算法验证有向哈密顿回路问题的一个充分条件.更具体地说,将有向图建模为一个自动机,并在自动机的基础上形式化了哈密顿图的相关概念,然后提出了一个多项式复杂度的算法,检... 利用自动机理论研究有向哈密顿回路问题,提出一个多项式复杂度的算法验证有向哈密顿回路问题的一个充分条件.更具体地说,将有向图建模为一个自动机,并在自动机的基础上形式化了哈密顿图的相关概念,然后提出了一个多项式复杂度的算法,检验一个自动机标记的语言的子集是否满足真子集的一个充分条件.在该算法的基础上,提出了一个多项式复杂度的算法检验哈密顿图的一个充分条件并找出相应的哈密顿回路.特别地,给出了一个判断有向图是否是哈密顿图的充分条件和一个判断有向图中的一条回路是否是哈密顿回路的充分条件. 展开更多
关键词 有向哈密顿图 有向哈密顿回路 充分条件 多项式复杂度算法 离散事件系统 自动机
下载PDF
离散可积系统在求解非线性晶格方程中的应用研究
15
作者 朱永芳 《九江学院学报(自然科学版)》 CAS 2023年第1期98-102,共5页
为了探究离散可积系统的可积性,找寻一种将其应用至非线性晶格方程求解中的有效途径,文章研究利用离散可积系统获取了Toda晶格方程的一个精确解。主要研究内容为:求解离散微分差分方程族的可积性及其Bargmann约束下的双非线性化,得到了... 为了探究离散可积系统的可积性,找寻一种将其应用至非线性晶格方程求解中的有效途径,文章研究利用离散可积系统获取了Toda晶格方程的一个精确解。主要研究内容为:求解离散微分差分方程族的可积性及其Bargmann约束下的双非线性化,得到了有限维完全可积的Hamilton系统.使用高阶Bargmann约束求解方程的Lax对和伴随Lax对,将方程双非线性化为一个可积辛映射和一个有限维Liouville可积的Hamilton系统.研究提供了一种求解Toda晶格方程精确解的思路,展现了双非线性化方法在孤立子理论研究领域的重要性。 展开更多
关键词 离散可积系统 非线性晶格方程 孤立子 Toda晶格方程 无限维Hamilton系统
下载PDF
一族新的离散可积系的广义Hamilton系统及其可积耦合 被引量:1
16
作者 李欣越 徐西祥 赵秋兰 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期60-64,共5页
基于一个新的离散等谱特征值问题,利用屠格式导出非线性微分-差分方程族,建立其Ham ilton结构,证明方程族的L iouville可积,并给出其可积耦合.
关键词 离散可积系统 迹恒等式 结构 可积 可积耦合
下载PDF
二阶离散哈密尔顿系统周期解的存在性和多解性(英文) 被引量:2
17
作者 薛艳昉 唐春雷 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期7-12,共6页
通过临界点理论中的极小作用原理,得到了一些关于非自治二阶离散哈密尔顿系统Δ2u(t-1)=F(t,u(t))t∈Z的解的存在与多解性结果.
关键词 离散哈密尔顿系统 周期解 临界点 极小作用原理
下载PDF
一类二阶离散哈密尔顿系统的无穷多解的存在性 被引量:1
18
作者 马晟 胡志华 +1 位作者 童宽 江芹 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期85-93,共9页
基于变分法,运用鞍点定理,得到了一类二阶离散哈密尔顿系统的无穷多解的存在性,推广了已有文献的相关结果.
关键词 二阶离散哈密尔顿系统 鞍点定理 周期解 次凸
下载PDF
Hamilton方程的变分离散方法
19
作者 王雨顺 王斌 +1 位作者 王云峰 杨宏伟 《南京师大学报(自然科学版)》 CAS CSCD 2004年第2期1-4,共4页
讨论了经典Hamilton系统的变分原理 ,通过离散方程所对应的Lagrangian函数的方法 ,由离散的变分原理得到了一系列的辛差分算法 ,其中包括传统的辛格式 ,如 :辛Euler格式和中点格式 .
关键词 HAMILTON方程 变分离散方法 Lagrangian函数 辛差分算法
下载PDF
关于离散Schrdinger谱问题及其方程族的一个注记
20
作者 刘青平 王玉清 《数学物理学报(A辑)》 CSCD 北大核心 2006年第5期773-777,共5页
对一个离散Schr■dinger谱问题,给出与其相联系方程族的双Hamilton结构.同时构造了该族的一个Darboux变换.
关键词 孤立子 离散可积系统 DARBOUX变换 HAMILTON结构 VOLTERRA方程
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部