When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fa...When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.展开更多
In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su...In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method.展开更多
Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking co...Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition(VMD)-Permutation entropy(PE)and long short-term memory(LSTM)neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data.The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components,which solves the signal decomposition algorithm’s end-effect and modal confusion problems.The permutation entropy is used to evaluate the complexity of the intrinsic mode function,and the reconstruction based on similar entropy and low complexity is used to reduce the difficulty of modeling.Finally,we use the LSTM and stacking fusion models to predict and superimpose;the stacking integration model integrates Gradient boosting regression(GBR),Kernel ridge regression(KRR),and Elastic net regression(ENet)as primary learners,and the secondary learner adopts the kernel ridge regression method with solid generalization ability.The Amazon public data set experiment shows that compared with Holt-winters,LSTM,and Neuralprophet models,we can see that the optimization range of multiple evaluation indicators is 0.338∼1.913,0.057∼0.940,0.000∼0.017 and 1.038∼8.481 in root means square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and variance(VAR),showing its stability and better prediction accuracy.展开更多
Output-only structural identification is developed by a refined Frequency Domain Decomposition(rFDD) approach, towards assessing current modal properties of heavy-damped buildings(in terms of identification challe...Output-only structural identification is developed by a refined Frequency Domain Decomposition(rFDD) approach, towards assessing current modal properties of heavy-damped buildings(in terms of identification challenge), under strong ground motions. Structural responses from earthquake excitations are taken as input signals for the identification algorithm. A new dedicated computational procedure, based on coupled Chebyshev Type Ⅱ bandpass filters, is outlined for the effective estimation of natural frequencies, mode shapes and modal damping ratios. The identification technique is also coupled with a Gabor Wavelet Transform, resulting in an effective and self-contained time-frequency analysis framework. Simulated response signals generated by shear-type frames(with variable structural features) are used as a necessary validation condition. In this context use is made of a complete set of seismic records taken from the FEMA P695 database, i.e. all 44 "Far-Field"(22 NS, 22 WE) earthquake signals. The modal estimates are statistically compared to their target values, proving the accuracy of the developed algorithm in providing prompt and accurate estimates of all current strong ground motion modal parameters. At this stage, such analysis tool may be employed for convenient application in the realm of Earthquake Engineering, towards potential Structural Health Monitoring and damage detection purposes.展开更多
Modal parameter identification is a mature technology.However,there are some challenges in its practical applications such as the identification of vibration systems involving closely spaced modes and intensive noise ...Modal parameter identification is a mature technology.However,there are some challenges in its practical applications such as the identification of vibration systems involving closely spaced modes and intensive noise contamination.This paper proposes a new time-frequency method based on intrinsic chirp component decomposition(ICCD)to address these issues.In this method,a redundant Fourier model is used to ameliorate border distortions and improve the accuracy of signal reconstruction.The effectiveness and accuracy of the proposed method are illustrated using three examples:a cantilever beam structure with intensive noise contamination or environmental interference,a four-degree-of-freedom structure with two closely spaced modes,and an impact test on a cantilever rectangular plate.By comparison with the identification method based on the empirical wavelet transform(EWT),it is shown that the presented method is effective,even in a high-noise environment,and the dynamic characteristics of closely spaced modes are accurately determined.展开更多
The pull test is a damaging detection method that fails to measure the actual length of a bolt.Thus,the ultrasonic echo is an important non?destructive testing method for bolt quality detection.In this research,the va...The pull test is a damaging detection method that fails to measure the actual length of a bolt.Thus,the ultrasonic echo is an important non?destructive testing method for bolt quality detection.In this research,the variational modal decomposition(VMD)method is introduced into the bolt detection signal analysis.On the basis of morphological filtering(MF)and the VMD method,a VMD?combined MF principle is established into a bolt detection signal analysis method(MF?VMD).MF?VMD is used to analyze the vibration and actual bolt detection signals of the simulation.Results show that MF?VMD effectively separates intrinsic mode function,even under strong interference.In comparison with conventional VMD method,the proposed method can remove noise interference.An intrinsic mode function of the field detection signal can be effectively identified by reflecting the signal at the bottom of the bolt.展开更多
The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditio...The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditioning of the equations. Based on the singular value decomposition (SVD) of the coefficient matrix, an error based truncation algorithm is proposed in this paper. By rejection of selected small singular values, the influence of noise can be reduced. A simply-supported beam is used as a simulation example to compare the results to other methods. Illustrative numerical examples demonstrate the good efficiency and stability of the algorithm in the nondestructive identification of structural damage through modal data.展开更多
One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the mo...One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.展开更多
A method using HPLC-DAD coupled with second-order calibration was developed to simultaneously determine metronidazole and tinidazole in plasma samples in this paper. The second-order calibration method based on APTLD ...A method using HPLC-DAD coupled with second-order calibration was developed to simultaneously determine metronidazole and tinidazole in plasma samples in this paper. The second-order calibration method based on APTLD (alternating penalty trilinear decomposition) algorithm was proposed to analyze the three-way HPLC-DAD data from both standard and prediction samples, which makes it possible that calibration can be performed even in the presence of unknown interferences with a simple and green chromatographic condition and short analysis time. The results showed that good recoveries were obtained although the chromatographic and spectral profiles of the analytes of interest as well as background were partially overlapped with each other in plasma samples.展开更多
In order to improve the detection accuracy of chaotic small signal prediction models under the background of sea clutter,a distributed sea clutter denoising algorithm is proposed,on the basis of variational modal deco...In order to improve the detection accuracy of chaotic small signal prediction models under the background of sea clutter,a distributed sea clutter denoising algorithm is proposed,on the basis of variational modal decomposition(VMD).The sea clutter signal is decomposed into variational modal functions(VMF)with different center bandwidths by means of VMD.By analyzing the autocorrelation characteristics of the deco mposed signal,we perform instantaneous half-period(IHP)and wavelet threshold denoising processing on the high-frequency and low-frequency components respectively,and regain the sea clutter signals.Based on LSSVM sea clutter prediction model,this research compares and analyzes the denoising effects of VMD.Experi ment results show that,the RMSE after denoising is reduced by two orders of magnitude,approximating 0.00034,with an apparently better denoising effect,compared with the root mean square error(RMSE)of the prediction before denoising.展开更多
The outer-product decomposition algorithm(OPDA)performs well at blindly identifying system function.However,the direct use of the OPDA in systems using bandpass source will lead to errors.This study proposes an approa...The outer-product decomposition algorithm(OPDA)performs well at blindly identifying system function.However,the direct use of the OPDA in systems using bandpass source will lead to errors.This study proposes an approach to enhance the channel estimation quality of a bandpass source that uses OPDA.This approach performs frequency domain transformation on the received signal and obtains the optimal transformation parameter by minimizing the p-norm of an error matrix.Moreover,the proposed approach extends the application of OPDA from a white source to a bandpass white source or chirp signal.Theoretical formulas and simulation results show that the proposed approach not only reduces the estimation error but also accelerates the algorithm in a bandpass system,thus being highly feasible in practical blind system identification applications.展开更多
A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general para...A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51109158,U2106223)the Science and Technology Development Plan Program of Tianjin Municipal Transportation Commission(Grant No.2022-48)。
文摘When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.
基金supported by the National Natural Science Foundation of China(Grant No.62063016).
文摘In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method.
基金The National Natural Science Foundation of China (No.62262011)The Natural Science Foundation of Guangxi (No.2021JJA170130).
文摘Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition(VMD)-Permutation entropy(PE)and long short-term memory(LSTM)neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data.The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components,which solves the signal decomposition algorithm’s end-effect and modal confusion problems.The permutation entropy is used to evaluate the complexity of the intrinsic mode function,and the reconstruction based on similar entropy and low complexity is used to reduce the difficulty of modeling.Finally,we use the LSTM and stacking fusion models to predict and superimpose;the stacking integration model integrates Gradient boosting regression(GBR),Kernel ridge regression(KRR),and Elastic net regression(ENet)as primary learners,and the secondary learner adopts the kernel ridge regression method with solid generalization ability.The Amazon public data set experiment shows that compared with Holt-winters,LSTM,and Neuralprophet models,we can see that the optimization range of multiple evaluation indicators is 0.338∼1.913,0.057∼0.940,0.000∼0.017 and 1.038∼8.481 in root means square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and variance(VAR),showing its stability and better prediction accuracy.
基金Public research funding from“Fondi di Ricerca d’Ateneo ex 60%” and a ministerial doctoral grantfunds at the ISA Doctoral School,University of Bergamo,Department of Engineering and Applied Sciences (Dalmine)
文摘Output-only structural identification is developed by a refined Frequency Domain Decomposition(rFDD) approach, towards assessing current modal properties of heavy-damped buildings(in terms of identification challenge), under strong ground motions. Structural responses from earthquake excitations are taken as input signals for the identification algorithm. A new dedicated computational procedure, based on coupled Chebyshev Type Ⅱ bandpass filters, is outlined for the effective estimation of natural frequencies, mode shapes and modal damping ratios. The identification technique is also coupled with a Gabor Wavelet Transform, resulting in an effective and self-contained time-frequency analysis framework. Simulated response signals generated by shear-type frames(with variable structural features) are used as a necessary validation condition. In this context use is made of a complete set of seismic records taken from the FEMA P695 database, i.e. all 44 "Far-Field"(22 NS, 22 WE) earthquake signals. The modal estimates are statistically compared to their target values, proving the accuracy of the developed algorithm in providing prompt and accurate estimates of all current strong ground motion modal parameters. At this stage, such analysis tool may be employed for convenient application in the realm of Earthquake Engineering, towards potential Structural Health Monitoring and damage detection purposes.
基金Project supported by the National Natural Science Foundation of China(Nos.11702170,11320011,and 11802279)the China Postdoctoral Science Foundation(No.2016M601585)
文摘Modal parameter identification is a mature technology.However,there are some challenges in its practical applications such as the identification of vibration systems involving closely spaced modes and intensive noise contamination.This paper proposes a new time-frequency method based on intrinsic chirp component decomposition(ICCD)to address these issues.In this method,a redundant Fourier model is used to ameliorate border distortions and improve the accuracy of signal reconstruction.The effectiveness and accuracy of the proposed method are illustrated using three examples:a cantilever beam structure with intensive noise contamination or environmental interference,a four-degree-of-freedom structure with two closely spaced modes,and an impact test on a cantilever rectangular plate.By comparison with the identification method based on the empirical wavelet transform(EWT),it is shown that the presented method is effective,even in a high-noise environment,and the dynamic characteristics of closely spaced modes are accurately determined.
基金supported by the Key Project of the National Natural Science Foundation of China (No.51739006)the Open Research Fund of the Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (No.RGET1502)+1 种基金the Open Research Fund of Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering (No.2017SDSJ05)the Project of the Hubei Foundation for Innovative Research Groups (No.2015CFA025)
文摘The pull test is a damaging detection method that fails to measure the actual length of a bolt.Thus,the ultrasonic echo is an important non?destructive testing method for bolt quality detection.In this research,the variational modal decomposition(VMD)method is introduced into the bolt detection signal analysis.On the basis of morphological filtering(MF)and the VMD method,a VMD?combined MF principle is established into a bolt detection signal analysis method(MF?VMD).MF?VMD is used to analyze the vibration and actual bolt detection signals of the simulation.Results show that MF?VMD effectively separates intrinsic mode function,even under strong interference.In comparison with conventional VMD method,the proposed method can remove noise interference.An intrinsic mode function of the field detection signal can be effectively identified by reflecting the signal at the bottom of the bolt.
文摘The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditioning of the equations. Based on the singular value decomposition (SVD) of the coefficient matrix, an error based truncation algorithm is proposed in this paper. By rejection of selected small singular values, the influence of noise can be reduced. A simply-supported beam is used as a simulation example to compare the results to other methods. Illustrative numerical examples demonstrate the good efficiency and stability of the algorithm in the nondestructive identification of structural damage through modal data.
基金supported by the State Key Program of National Natural Science of China (No. 11232009)the Shanghai Leading Academic Discipline Project (No. S30106)
文摘One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.
基金financially supported by The National Natural Science Foundation of China(No.20775025)The National Basic Research Program(No.2007CB216404) as well as PCSIRT
文摘A method using HPLC-DAD coupled with second-order calibration was developed to simultaneously determine metronidazole and tinidazole in plasma samples in this paper. The second-order calibration method based on APTLD (alternating penalty trilinear decomposition) algorithm was proposed to analyze the three-way HPLC-DAD data from both standard and prediction samples, which makes it possible that calibration can be performed even in the presence of unknown interferences with a simple and green chromatographic condition and short analysis time. The results showed that good recoveries were obtained although the chromatographic and spectral profiles of the analytes of interest as well as background were partially overlapped with each other in plasma samples.
文摘In order to improve the detection accuracy of chaotic small signal prediction models under the background of sea clutter,a distributed sea clutter denoising algorithm is proposed,on the basis of variational modal decomposition(VMD).The sea clutter signal is decomposed into variational modal functions(VMF)with different center bandwidths by means of VMD.By analyzing the autocorrelation characteristics of the deco mposed signal,we perform instantaneous half-period(IHP)and wavelet threshold denoising processing on the high-frequency and low-frequency components respectively,and regain the sea clutter signals.Based on LSSVM sea clutter prediction model,this research compares and analyzes the denoising effects of VMD.Experi ment results show that,the RMSE after denoising is reduced by two orders of magnitude,approximating 0.00034,with an apparently better denoising effect,compared with the root mean square error(RMSE)of the prediction before denoising.
基金This study is supported by the Natural Science Foundation of China(NSFC)under Grant Nos.11774073 and 51279033.
文摘The outer-product decomposition algorithm(OPDA)performs well at blindly identifying system function.However,the direct use of the OPDA in systems using bandpass source will lead to errors.This study proposes an approach to enhance the channel estimation quality of a bandpass source that uses OPDA.This approach performs frequency domain transformation on the received signal and obtains the optimal transformation parameter by minimizing the p-norm of an error matrix.Moreover,the proposed approach extends the application of OPDA from a white source to a bandpass white source or chirp signal.Theoretical formulas and simulation results show that the proposed approach not only reduces the estimation error but also accelerates the algorithm in a bandpass system,thus being highly feasible in practical blind system identification applications.
基金This work was supported by the Chinese National Natural Science Foundation ( No. 69925308).
文摘A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.