期刊文献+
共找到915篇文章
< 1 2 46 >
每页显示 20 50 100
Sparse Modal Decomposition Method Addressing Underdetermined Vortex-Induced Vibration Reconstruction Problem for Marine Risers 被引量:1
1
作者 DU Zun-feng ZHU Hai-ming YU Jian-xing 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期285-296,共12页
When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fa... When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring. 展开更多
关键词 motion reconstruction vortex-induced vibration(VIV) marine riser modal decomposition method compressed sensing
下载PDF
Generalized load graphical forecasting method based on modal decomposition
2
作者 Lizhen Wu Peixin Chang +1 位作者 Wei Chen Tingting Pei 《Global Energy Interconnection》 EI CSCD 2024年第2期166-178,共13页
In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su... In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method. 展开更多
关键词 Load forecasting Generalized load Image processing DenseNet modal decomposition
下载PDF
Cloud Resource Integrated Prediction Model Based on Variational Modal Decomposition-Permutation Entropy and LSTM
3
作者 Xinfei Li Xiaolan Xie +1 位作者 Yigang Tang Qiang Guo 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2707-2724,共18页
Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking co... Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition(VMD)-Permutation entropy(PE)and long short-term memory(LSTM)neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data.The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components,which solves the signal decomposition algorithm’s end-effect and modal confusion problems.The permutation entropy is used to evaluate the complexity of the intrinsic mode function,and the reconstruction based on similar entropy and low complexity is used to reduce the difficulty of modeling.Finally,we use the LSTM and stacking fusion models to predict and superimpose;the stacking integration model integrates Gradient boosting regression(GBR),Kernel ridge regression(KRR),and Elastic net regression(ENet)as primary learners,and the secondary learner adopts the kernel ridge regression method with solid generalization ability.The Amazon public data set experiment shows that compared with Holt-winters,LSTM,and Neuralprophet models,we can see that the optimization range of multiple evaluation indicators is 0.338∼1.913,0.057∼0.940,0.000∼0.017 and 1.038∼8.481 in root means square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and variance(VAR),showing its stability and better prediction accuracy. 展开更多
关键词 Cloud resource prediction variational modal decomposition permutation entropy long and short-term neural network stacking integration
下载PDF
A refined Frequency Domain Decomposition tool for structural modal monitoring in earthquake engineering 被引量:2
4
作者 Fabio Pioldi Egidio Rizzi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第3期627-648,共22页
Output-only structural identification is developed by a refined Frequency Domain Decomposition(rFDD) approach, towards assessing current modal properties of heavy-damped buildings(in terms of identification challe... Output-only structural identification is developed by a refined Frequency Domain Decomposition(rFDD) approach, towards assessing current modal properties of heavy-damped buildings(in terms of identification challenge), under strong ground motions. Structural responses from earthquake excitations are taken as input signals for the identification algorithm. A new dedicated computational procedure, based on coupled Chebyshev Type Ⅱ bandpass filters, is outlined for the effective estimation of natural frequencies, mode shapes and modal damping ratios. The identification technique is also coupled with a Gabor Wavelet Transform, resulting in an effective and self-contained time-frequency analysis framework. Simulated response signals generated by shear-type frames(with variable structural features) are used as a necessary validation condition. In this context use is made of a complete set of seismic records taken from the FEMA P695 database, i.e. all 44 "Far-Field"(22 NS, 22 WE) earthquake signals. The modal estimates are statistically compared to their target values, proving the accuracy of the developed algorithm in providing prompt and accurate estimates of all current strong ground motion modal parameters. At this stage, such analysis tool may be employed for convenient application in the realm of Earthquake Engineering, towards potential Structural Health Monitoring and damage detection purposes. 展开更多
关键词 Operational modal Analysis (OMA) modal dynamic identification refined Frequency Domain decomposition(rFDD) FEMA P695 seismic database earthquake response identification input
下载PDF
Modal identification of multi-degree-of-freedom structures based on intrinsic chirp component decomposition method 被引量:1
5
作者 Sha WEI Shiqian CHEN +2 位作者 Zhike PENG Xingjian DONG Wenming ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第12期1741-1758,共18页
Modal parameter identification is a mature technology.However,there are some challenges in its practical applications such as the identification of vibration systems involving closely spaced modes and intensive noise ... Modal parameter identification is a mature technology.However,there are some challenges in its practical applications such as the identification of vibration systems involving closely spaced modes and intensive noise contamination.This paper proposes a new time-frequency method based on intrinsic chirp component decomposition(ICCD)to address these issues.In this method,a redundant Fourier model is used to ameliorate border distortions and improve the accuracy of signal reconstruction.The effectiveness and accuracy of the proposed method are illustrated using three examples:a cantilever beam structure with intensive noise contamination or environmental interference,a four-degree-of-freedom structure with two closely spaced modes,and an impact test on a cantilever rectangular plate.By comparison with the identification method based on the empirical wavelet transform(EWT),it is shown that the presented method is effective,even in a high-noise environment,and the dynamic characteristics of closely spaced modes are accurately determined. 展开更多
关键词 modal identification closely spaced mode TIME-FREQUENCY domain INTRINSIC CHIRP COMPONENT decomposition(ICCD) multi-degree-of-freedom(MDOF) system
下载PDF
Anchoring Bolt Detection Based on Morphological Filtering and Variational Modal Decomposition 被引量:1
6
作者 XU Juncai REN Qingwen LEI Bangjun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第4期628-634,共7页
The pull test is a damaging detection method that fails to measure the actual length of a bolt.Thus,the ultrasonic echo is an important non?destructive testing method for bolt quality detection.In this research,the va... The pull test is a damaging detection method that fails to measure the actual length of a bolt.Thus,the ultrasonic echo is an important non?destructive testing method for bolt quality detection.In this research,the variational modal decomposition(VMD)method is introduced into the bolt detection signal analysis.On the basis of morphological filtering(MF)and the VMD method,a VMD?combined MF principle is established into a bolt detection signal analysis method(MF?VMD).MF?VMD is used to analyze the vibration and actual bolt detection signals of the simulation.Results show that MF?VMD effectively separates intrinsic mode function,even under strong interference.In comparison with conventional VMD method,the proposed method can remove noise interference.An intrinsic mode function of the field detection signal can be effectively identified by reflecting the signal at the bottom of the bolt. 展开更多
关键词 bolt detection variational modal decomposition morphological filtering intrinsic mode function
下载PDF
A SINGULAR VALUE DECOMPOSITION BASED TRUNCATION ALGORITHM IN SOLVING THE STRUCTURAL DAMAGE EQUATIONS 被引量:6
7
作者 RenWei-Xin 《Acta Mechanica Solida Sinica》 SCIE EI 2005年第2期181-188,共8页
The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditio... The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditioning of the equations. Based on the singular value decomposition (SVD) of the coefficient matrix, an error based truncation algorithm is proposed in this paper. By rejection of selected small singular values, the influence of noise can be reduced. A simply-supported beam is used as a simulation example to compare the results to other methods. Illustrative numerical examples demonstrate the good efficiency and stability of the algorithm in the nondestructive identification of structural damage through modal data. 展开更多
关键词 linear equation set single value decomposition least-square method finite element method modal analysis damage identification structural dynamics
下载PDF
Separation of closely spaced modes by combining complex envelope displacement analysis with method of generating intrinsic mode functions through filtering algorithm based on wavelet packet decomposition 被引量:3
8
作者 Y.S.KIM 陈立群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期801-810,共10页
One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the mo... One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method. 展开更多
关键词 empirical mode decomposition (EMD) wavelet packet decomposition com- plex envelope displacement analysis (CEDA) closely spaced modes modal identification
下载PDF
Simultaneous determination of metronidazole and tinidazole in plasma by using HPLC-DAD coupled with second-order calibration 被引量:4
9
作者 Li Qun Ouyang Hai Long Wu +4 位作者 Ya Juan Liu Jian Yue Wang Yong Jie Yu Hong Yan Zou Ru Qin Yu 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第10期1223-1226,共4页
A method using HPLC-DAD coupled with second-order calibration was developed to simultaneously determine metronidazole and tinidazole in plasma samples in this paper. The second-order calibration method based on APTLD ... A method using HPLC-DAD coupled with second-order calibration was developed to simultaneously determine metronidazole and tinidazole in plasma samples in this paper. The second-order calibration method based on APTLD (alternating penalty trilinear decomposition) algorithm was proposed to analyze the three-way HPLC-DAD data from both standard and prediction samples, which makes it possible that calibration can be performed even in the presence of unknown interferences with a simple and green chromatographic condition and short analysis time. The results showed that good recoveries were obtained although the chromatographic and spectral profiles of the analytes of interest as well as background were partially overlapped with each other in plasma samples. 展开更多
关键词 HPLC-DAD second-order calibration Alternating penalty trilinear decomposition (APTLD) METRONIDAZOLE TINIDAZOLE PLASMA
下载PDF
Distributed Sea Clutter Denoising Algorithm Based on Variational Mode Decomposition 被引量:8
10
作者 SUN Jiang XING Hongyan WU Jiajia 《Instrumentation》 2020年第3期23-32,共10页
In order to improve the detection accuracy of chaotic small signal prediction models under the background of sea clutter,a distributed sea clutter denoising algorithm is proposed,on the basis of variational modal deco... In order to improve the detection accuracy of chaotic small signal prediction models under the background of sea clutter,a distributed sea clutter denoising algorithm is proposed,on the basis of variational modal decomposition(VMD).The sea clutter signal is decomposed into variational modal functions(VMF)with different center bandwidths by means of VMD.By analyzing the autocorrelation characteristics of the deco mposed signal,we perform instantaneous half-period(IHP)and wavelet threshold denoising processing on the high-frequency and low-frequency components respectively,and regain the sea clutter signals.Based on LSSVM sea clutter prediction model,this research compares and analyzes the denoising effects of VMD.Experi ment results show that,the RMSE after denoising is reduced by two orders of magnitude,approximating 0.00034,with an apparently better denoising effect,compared with the root mean square error(RMSE)of the prediction before denoising. 展开更多
关键词 Sea Clutter Variational modal decomposition Autocorrelation Properties Instantaneous Half-Period
下载PDF
Enhancement Channel Estimation Using Outer-Product Decomposition Algorithm Based on Frequency Transformation
11
作者 Xiukun Li Ji Wang Dexin Zhao 《Journal of Marine Science and Application》 CSCD 2020年第2期283-292,共10页
The outer-product decomposition algorithm(OPDA)performs well at blindly identifying system function.However,the direct use of the OPDA in systems using bandpass source will lead to errors.This study proposes an approa... The outer-product decomposition algorithm(OPDA)performs well at blindly identifying system function.However,the direct use of the OPDA in systems using bandpass source will lead to errors.This study proposes an approach to enhance the channel estimation quality of a bandpass source that uses OPDA.This approach performs frequency domain transformation on the received signal and obtains the optimal transformation parameter by minimizing the p-norm of an error matrix.Moreover,the proposed approach extends the application of OPDA from a white source to a bandpass white source or chirp signal.Theoretical formulas and simulation results show that the proposed approach not only reduces the estimation error but also accelerates the algorithm in a bandpass system,thus being highly feasible in practical blind system identification applications. 展开更多
关键词 Blind identification Outer-product decomposition algorithm Bandpass white signal Chirp signal second-order statistics
下载PDF
Unified parametric approaches for high-order integral observer design for matrix second-order linear systems
12
作者 Guangren DUAN Yunli WU 《控制理论与应用(英文版)》 EI 2006年第2期133-139,共7页
A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general para... A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach. 展开更多
关键词 Matrix second-order linear systems High-order integral observer Generalized eigenstructure assignment Singular value decomposition Right factorization
下载PDF
基于多维气象信息时空融合和MPA-VMD的短期电力负荷组合预测模型 被引量:1
13
作者 王凌云 周翔 +2 位作者 田恬 杨波 李世春 《电力自动化设备》 EI CSCD 北大核心 2024年第2期190-197,共8页
为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分... 为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分析并实现时空融合。在时间维度上,采用海洋捕食者算法(MPA)实现变分模态分解(VMD)核心参数的自动寻优,并采用加权排列熵构造MPA-VMD适应度函数,实现负荷序列的自适应分解。通过将时间维度各分量与空间维度各气象信息进行融合构造长短期记忆(LSTM)网络模型与海洋捕食者算法-最小二乘支持向量机(MPA-LSSVM)模型的输入集,得到各分量预测结果,根据评价指标选择各分量对应的预测模型,重构得到整体预测结果。算例分析结果表明,所提预测模型优于传统预测模型,有效提高了电力负荷预测精度。 展开更多
关键词 短期电力负荷预测 海洋捕食者算法 时空融合 COPULA理论 变分模态分解
下载PDF
金刚石砂轮与金刚石滚轮磨削接触的声发射监测 被引量:1
14
作者 赵华东 刘勇 +1 位作者 朱振伟 张瑞 《机械设计与制造》 北大核心 2024年第2期174-178,共5页
为了实现金刚石砂轮磨削加工金刚石滚轮过程的自动化,需要对磨削接触状态进行准确识别。由于磨削过程中材料去除率较小导致声发射信号幅值变化不显著,仅用有效值对磨削接触状态识别的准确性受噪声影响很大。针对此问题,通过模态分解和... 为了实现金刚石砂轮磨削加工金刚石滚轮过程的自动化,需要对磨削接触状态进行准确识别。由于磨削过程中材料去除率较小导致声发射信号幅值变化不显著,仅用有效值对磨削接触状态识别的准确性受噪声影响很大。针对此问题,通过模态分解和相关性分析相结合的方法对采集的声发射信号进行处理,再计算各分量的有效值和方差值完成特征提取,最后利用支持向量机对磨削接触状态进行识别。实际应用发现:该方法对滚轮的磨削接触状识别准确率达到了98.3%,准确实现了对磨削接触状态的识别。 展开更多
关键词 金刚石滚轮 金刚石砂轮 声发射 模态分解 特征提取 磨削接触状态识别
下载PDF
基于VMD-GA-BiLSTM的月降水量预测方法 被引量:1
15
作者 于霞 宋杰 +2 位作者 段勇 彭曦霆 李冰洁 《沈阳大学学报(自然科学版)》 CAS 2024年第4期297-305,共9页
利用辽宁省气象局提供的地面观测降水资料,构建了具有多元时间特征的降水数据,采用变分模态分解方法(variational mode decomposition,VMD)组合遗传算法(genetic algorithm,GA)对双向长短时记忆神经网络(bidirectional long short-term ... 利用辽宁省气象局提供的地面观测降水资料,构建了具有多元时间特征的降水数据,采用变分模态分解方法(variational mode decomposition,VMD)组合遗传算法(genetic algorithm,GA)对双向长短时记忆神经网络(bidirectional long short-term memory,BiLSTM)进行优化,建立基于VMD-GA-BiLSTM的月降水量预测模型,并与BiLSTM、VMD-BiLSTM和GA-BiLSTM进行实验对比,应用均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)和R 2决定系数作为模型评价指标。实验结果表明:VMD-GA-BiLSTM模型的R 2决定系数达到0.98,RMSE和MAE表现更低,验证了VMD-GA-BiLSTM模型在时间序列预测方面的优势。 展开更多
关键词 BiLSTM VMD 遗传算法 月降水量 时序特征
下载PDF
基于广域信息处理的配电网故障隔离技术研究 被引量:1
16
作者 思勤 郭杉 贾俊青 《电子设计工程》 2024年第9期124-128,共5页
针对分布式电源并入配电网后,传统算法进行故障检测时存在定位准确度偏低、反应速度较慢的问题,文中基于广域信息处理技术提出了一种配电网故障隔离方法。该方法采用模态分解算法将故障复杂信号分解为多种类基础小信号,使用支持向量机... 针对分布式电源并入配电网后,传统算法进行故障检测时存在定位准确度偏低、反应速度较慢的问题,文中基于广域信息处理技术提出了一种配电网故障隔离方法。该方法采用模态分解算法将故障复杂信号分解为多种类基础小信号,使用支持向量机对这些小信号进行数据分类。但由于传统支持向量机的收敛速度较慢,因此通过引入粒子群算法对其参数加以优化,从而提升模型的运算速度。实验结果表明,在加入分布式电源的电网中,所提算法的故障定位准确率为96.7%,平均运行时间则为43.9 s,且这两项参数在对比算法中均为最优。由此证明,该算法可应用于实际工程中,为配电网故障隔离提供技术支撑。 展开更多
关键词 广域信息 故障隔离 模态分解法 支持向量机 粒子群优化 智能电网
下载PDF
基于VMD-IMPA-SVM的超短期风电功率预测 被引量:2
17
作者 刘金朋 邓嘉明 +2 位作者 高鹏宇 刘胡诗涵 孙思源 《智慧电力》 北大核心 2024年第7期24-31,79,共9页
针对风力发电强波动性带来的预测精度不高问题,构建一种基于变模态分解(VMD)、灰狼优化算法(GWO)、海洋捕食者算法(MPA)和支持向量机(SVM)的组合预测模型。采用GWO对VMD的模态数和惩罚因子进行寻优,将原始功率序列分解为子序列进行降噪... 针对风力发电强波动性带来的预测精度不高问题,构建一种基于变模态分解(VMD)、灰狼优化算法(GWO)、海洋捕食者算法(MPA)和支持向量机(SVM)的组合预测模型。采用GWO对VMD的模态数和惩罚因子进行寻优,将原始功率序列分解为子序列进行降噪处理;运用对立学习和柯西变异等方法改进MPA的种群生成与变异方式,得到改进MPA(IMPA)并优化SVM中的核参数与惩罚参数,进而构建VMD-IMPA-SVM组合预测模型,对各子序列进行预测并叠加得到最终预测值。实际算例分析表明,所提组合预测模型具有较高的预测精度,同时具备强鲁棒性。 展开更多
关键词 风电功率预测 变模态分解 海洋捕食者算法 支持向量机 灰狼优化算法
下载PDF
改进多变量时序模型的露天涌水量预测 被引量:1
18
作者 王孝东 杨懿杰 +4 位作者 吕玉琪 刘唱 陈炫中 谢博 杜青文 《安全与环境学报》 CAS CSCD 北大核心 2024年第8期2994-3004,共11页
露天矿坑涌水量变化影响着边坡的稳定性、工程进度和设备使用寿命,在矿山汛期,涌水量的突增给矿山带来巨大的安全隐患。为了做好涌水量突增安全防范,对于汛期涌水量的精准预测成为矿山安全生产的一大难题。针对这一问题,提出了一种基于... 露天矿坑涌水量变化影响着边坡的稳定性、工程进度和设备使用寿命,在矿山汛期,涌水量的突增给矿山带来巨大的安全隐患。为了做好涌水量突增安全防范,对于汛期涌水量的精准预测成为矿山安全生产的一大难题。针对这一问题,提出了一种基于改进蜣螂优化算法(Sparrow Initialization Dung Beetle Optimizer,SIDBO)优化变分模态分解(Variational Mode Decomposition,VMD)-双向长短周期神经网络(Bi-directional Long Short-Term Memory,BiLSTM)时序模型预测露天矿坑涌水量的方法。对于难以确定VMD参数的问题,利用改进蜣螂优化算法寻找最优VMD核心参数组合。SIDBO算法首先基于t分布的差分策略优化勘探阶段,使用最优解和第二解中位搜寻策略增强全局最优解搜索能力,最后采用麻雀优化算法优化开发阶段。结果表明,与VMD-SIDBO-LSTM等模型相比较,SIDBO-VMD-SIDBO-BiLSTM模型预测精度更高,均方根误差(R_(MSE))、平均绝对误差(M_(AE))、平均绝对百分比误差(M_(APE))、R^(2)分别为5.96、4.96、0.41%、0.98,并将该模型与传统地质方法——水均衡法在实际工程实例中进行对比,该时序模型相对于水均衡法对于矿坑汛期涌水量预测精度提升了3.8%,为露天矿汛期涌水量预测提供了新的技术方法与思路。 展开更多
关键词 安全工程 算法优化 时序预测 变分模态分解(VMD) 深度学习
下载PDF
基于多尺度分量特征学习的用户级超短期负荷预测
19
作者 臧海祥 陈玉伟 +4 位作者 程礼临 朱克东 张越 孙国强 卫志农 《电网技术》 EI CSCD 北大核心 2024年第6期2584-2592,I0093-I0098,共15页
针对用户级负荷波动性强,一步分解后数据维度增加导致运行效率降低以及精度提升有限等问题,该文提出一种新的多尺度分量特征学习框架,用于用户级超短期负荷预测。构建基于自适应噪声的完整经验模态分解(complete ensemble empirical mod... 针对用户级负荷波动性强,一步分解后数据维度增加导致运行效率降低以及精度提升有限等问题,该文提出一种新的多尺度分量特征学习框架,用于用户级超短期负荷预测。构建基于自适应噪声的完整经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)以及变分模态分解(variational mode decomposition,VMD)的自适应二次模态分解框架,捕捉周期性等时序特征,并降低其非平稳特性;采用多维特征融合的方式挖掘各本征模态函数之间的耦合关系,丰富特征信息;利用改进的多尺度空间注意力(multiscale spatial attention,MSA)模块沿时间、空间以及通道等多尺度提取时空特征及多分量间耦合关系,进而便于卷积神经网络(convolutional neural network,CNN)学习多分量特征。基于江苏省南京市房地产业、教育业以及商务服务业共12位用户的实际负荷数据进行算例分析,各行业平均绝对百分误差分别为5.82%、4.54%以及8.78%,与效果最好的对照模型相比,分别降低了10.46%、6%以及7.48%,验证了该文模型具有较高的预测精度和良好的泛化性能。 展开更多
关键词 负荷预测 卷积神经网络 自适应二次模态分解 多尺度空间注意力机制
下载PDF
基于POD/DMD降阶模型的离心泵蜗壳内非稳态流动分析
20
作者 申正精 马登学 +2 位作者 李仁年 韩伟 赵伟国 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第10期1974-1982,共9页
为深入研究离心泵蜗壳内非线性耦合流动的本质流动特征,本文以一单级单吸式离心泵蜗壳为研究对象,分别采用本征正交分解和动态模态分解2种降阶模型对蜗壳内非定常流场数据进行模态分析,获取流场主导流动结构,并对原流场进行重构。研究发... 为深入研究离心泵蜗壳内非线性耦合流动的本质流动特征,本文以一单级单吸式离心泵蜗壳为研究对象,分别采用本征正交分解和动态模态分解2种降阶模型对蜗壳内非定常流场数据进行模态分析,获取流场主导流动结构,并对原流场进行重构。研究发现:蜗壳内流结构主要由速度正负交错,并且周期性特征与叶频及其倍频相关的成对涡旋组成。本征正交分解和动态模态分解方法均可以捕捉流场主要流动结构,并对原流场进行准确还原,两者重构流场与原流场的均方根误差均在0.4%以内。尽管本征正交分解方法在重构流场时整体均方根误差更小,但无法获取单频率流动结构,而动态模态分解方法可以获得不同频率流动结构对流场的贡献,从而捕捉到复杂流场中的不稳定模态。研究成果可以为增强离心泵全局流动的认知、关键水力部件优化设计及发展主/被动流动控制提供理论参考。 展开更多
关键词 离心泵 非定常流动 本征正交分解 动态模态分解 蜗壳 数据驱动 流场重构 降阶模型
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部