Finite element method (FEM) is an efficient numerical tool for the solution of partial differential equations (PDEs). It is one of the most general methods when compared to other numerical techniques. PDEs posed in a ...Finite element method (FEM) is an efficient numerical tool for the solution of partial differential equations (PDEs). It is one of the most general methods when compared to other numerical techniques. PDEs posed in a variational form over a given space, say a Hilbert space, are better numerically handled with the FEM. The FEM algorithm is used in various applications which includes fluid flow, heat transfer, acoustics, structural mechanics and dynamics, electric and magnetic field, etc. Thus, in this paper, the Finite Element Orthogonal Collocation Approach (FEOCA) is established for the approximate solution of Time Fractional Telegraph Equation (TFTE) with Mamadu-Njoseh polynomials as grid points corresponding to new basis functions constructed in the finite element space. The FEOCA is an elegant mixture of the Finite Element Method (FEM) and the Orthogonal Collocation Method (OCM). Two numerical examples are experimented on to verify the accuracy and rate of convergence of the method as compared with the theoretical results, and other methods in literature.展开更多
In this paper, the fully discrete orthogonal collocation method for Sobolev equations is considered, and the equivalence for discrete Garlerkin method is proved. Optimal order error estimate is obtained.
We propose and analyze a single-interval Legendre-Gauss-Radau(LGR)spectral collocation method for nonlinear second-order initial value problems of ordinary differential equations.We design an efficient iterative algor...We propose and analyze a single-interval Legendre-Gauss-Radau(LGR)spectral collocation method for nonlinear second-order initial value problems of ordinary differential equations.We design an efficient iterative algorithm and prove spectral convergence for the single-interval LGR collocation method.For more effective implementation,we propose a multi-interval LGR spectral collocation scheme,which provides us great flexibility with respect to the local time steps and local approximation degrees.Moreover,we combine the multi-interval LGR collocation method in time with the Legendre-Gauss-Lobatto collocation method in space to obtain a space-time spectral collocation approximation for nonlinear second-order evolution equations.Numerical results show that the proposed methods have high accuracy and excellent long-time stability.Numerical comparison between our methods and several commonly used methods are also provided.展开更多
We propose a collocation method for solving initial value problems of secondorder ODEs by using modified Laguerre functions.This new process provides global numerical solutions.Numerical results demonstrate the effici...We propose a collocation method for solving initial value problems of secondorder ODEs by using modified Laguerre functions.This new process provides global numerical solutions.Numerical results demonstrate the efficiency of the proposed algorithm.展开更多
In this paper,we present the use of the orthogonal spline collocation method for the semi-discretization scheme of the one-dimensional coupled nonlinear Schrödinger equations.This method uses the Hermite basis fu...In this paper,we present the use of the orthogonal spline collocation method for the semi-discretization scheme of the one-dimensional coupled nonlinear Schrödinger equations.This method uses the Hermite basis functions,by which physical quantities are approximatedwith their values and derivatives associatedwith Gaussian points.The convergence rate with order O(h4+t2)and the stability of the scheme are proved.Conservation properties are shown in both theory and practice.Extensive numerical experiments are presented to validate the numerical study under consideration.展开更多
文摘Finite element method (FEM) is an efficient numerical tool for the solution of partial differential equations (PDEs). It is one of the most general methods when compared to other numerical techniques. PDEs posed in a variational form over a given space, say a Hilbert space, are better numerically handled with the FEM. The FEM algorithm is used in various applications which includes fluid flow, heat transfer, acoustics, structural mechanics and dynamics, electric and magnetic field, etc. Thus, in this paper, the Finite Element Orthogonal Collocation Approach (FEOCA) is established for the approximate solution of Time Fractional Telegraph Equation (TFTE) with Mamadu-Njoseh polynomials as grid points corresponding to new basis functions constructed in the finite element space. The FEOCA is an elegant mixture of the Finite Element Method (FEM) and the Orthogonal Collocation Method (OCM). Two numerical examples are experimented on to verify the accuracy and rate of convergence of the method as compared with the theoretical results, and other methods in literature.
文摘In this paper, the fully discrete orthogonal collocation method for Sobolev equations is considered, and the equivalence for discrete Garlerkin method is proved. Optimal order error estimate is obtained.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.12171322,11771298 and 11871043)the Natural Science Foundation of Shanghai(Grant Nos.21ZR1447200,20ZR1441200 and 22ZR1445500)the Science and Technology Innovation Plan of Shanghai(Grant No.20JC1414200).
文摘We propose and analyze a single-interval Legendre-Gauss-Radau(LGR)spectral collocation method for nonlinear second-order initial value problems of ordinary differential equations.We design an efficient iterative algorithm and prove spectral convergence for the single-interval LGR collocation method.For more effective implementation,we propose a multi-interval LGR spectral collocation scheme,which provides us great flexibility with respect to the local time steps and local approximation degrees.Moreover,we combine the multi-interval LGR collocation method in time with the Legendre-Gauss-Lobatto collocation method in space to obtain a space-time spectral collocation approximation for nonlinear second-order evolution equations.Numerical results show that the proposed methods have high accuracy and excellent long-time stability.Numerical comparison between our methods and several commonly used methods are also provided.
基金supported in part by Foundation for Distinguished Young Talents in Higher Education of Guangdong,China,N.LYM09138supported in part by NSF of China N.10871131+2 种基金Fund for Doctor Authority of Chinese Educational Ministry N.20080270001Shanghai Leading Academic Discipline Project N.S30405Fund for E-institutes of Shanghai Universities N.E03004.
文摘We propose a collocation method for solving initial value problems of secondorder ODEs by using modified Laguerre functions.This new process provides global numerical solutions.Numerical results demonstrate the efficiency of the proposed algorithm.
文摘In this paper,we present the use of the orthogonal spline collocation method for the semi-discretization scheme of the one-dimensional coupled nonlinear Schrödinger equations.This method uses the Hermite basis functions,by which physical quantities are approximatedwith their values and derivatives associatedwith Gaussian points.The convergence rate with order O(h4+t2)and the stability of the scheme are proved.Conservation properties are shown in both theory and practice.Extensive numerical experiments are presented to validate the numerical study under consideration.