We study the hyperbolic–parabolic equations with rapidly oscillating coefficients. The formal second-order two-scale asymptotic expansion solutions are constructed by the multiscale asymptotic analysis. In addition, ...We study the hyperbolic–parabolic equations with rapidly oscillating coefficients. The formal second-order two-scale asymptotic expansion solutions are constructed by the multiscale asymptotic analysis. In addition, we theoretically explain the importance of the second-order two-scale solution by the error analysis in the pointwise sense. The associated explicit convergence rates are also obtained. Then a second-order two-scale numerical method based on the Newmark scheme is presented to solve the equations. Finally, some numerical examples are used to verify the effectiveness and efficiency of the multiscale numerical algorithm we proposed.展开更多
This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utiliz...This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.展开更多
In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(...In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.展开更多
This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△...This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.展开更多
To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem...To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.展开更多
In this paper we discuss the anti-periodic problem for a class of abstractnonlinear second-order evolution equations associated with maximal monotone operators in Hilbertspaces and give some new assumptions on operato...In this paper we discuss the anti-periodic problem for a class of abstractnonlinear second-order evolution equations associated with maximal monotone operators in Hilbertspaces and give some new assumptions on operators. We establish the existence and uniqueness ofanti-periodic solutions, which improve andgeneralize the results that have been obtained. Finally weillustrate the abstract theory by discussing a simple example of an anti-periodic problem fornonlinear partial differential equations.展开更多
Two dimensional parabolic stability equations (PSE) are numerically solved using expansions in orthogonal functions in the normal direction.The Chebyshev polynomials approximation,which is a very useful form of ortho...Two dimensional parabolic stability equations (PSE) are numerically solved using expansions in orthogonal functions in the normal direction.The Chebyshev polynomials approximation,which is a very useful form of orthogonal expansions, is applied to solving parabolic stability equations. It is shown that results of great accuracy are effectively obtained.The availability of using Chebyshev approximations in parabolic stability equations is confirmed.展开更多
An optimization theoretic approach of coefficients in semilinear parabolic equation is presented. It is based on convex analysis techniques. General theorems on existence are proved in L1 setting. A necessary conditio...An optimization theoretic approach of coefficients in semilinear parabolic equation is presented. It is based on convex analysis techniques. General theorems on existence are proved in L1 setting. A necessary condition is given for the solutions of the parameter estimatioll problem.展开更多
The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze...The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze the sound propagation problem in a range-dependent waveguide(Lu and Zhu, 2007). However, Lu and Zhu only considered a standard fluid PE to demonstrate the capability of the PML and did not take improved one-way models into consideration. They applied a [1/1] Padé approximant to the parabolic equation. The higher-order PEs are more accurate than standard ones when a very large angle propagation is considered. As for range-dependent problems, the techniques to handle the vertical interface between adjacent regions are mainly energy conserving and single-scattering. In this paper, the PML technique is generalized to the higher order elastic PE, as is to the higher order fluid PE. The correction of energy conserving is used in range-dependent waveguides. Simulation is made in both acoustic cases and seismo-acoustic cases. Range-independent and range-dependent waveguides are both adopted to test the accuracy and efficiency of this method. The numerical results illustrate that a PML is much more effective than an artificial absorbing layer(ABL) both in acoustic and seismo-acoustic sound propagation modeling.展开更多
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d...A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.展开更多
A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation ...A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.展开更多
In this paper, the Cauchy problem of the degenerate parabolic equationsis studied for some cases, and the explicit Holder estimates of the solution u with respectto x is given.
Let G =(V, E) be a locally finite connected weighted graph, and ? be the usual graph Laplacian. In this article, we study blow-up problems for the nonlinear parabolic equation ut = ?u + f(u) on G. The blow-up p...Let G =(V, E) be a locally finite connected weighted graph, and ? be the usual graph Laplacian. In this article, we study blow-up problems for the nonlinear parabolic equation ut = ?u + f(u) on G. The blow-up phenomenons for ut = ?u + f(u) are discussed in terms of two cases:(i) an initial condition is given;(ii) a Dirichlet boundary condition is given. We prove that if f satisfies appropriate conditions, then the corresponding solutions will blow up in a finite time.展开更多
The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They a...The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They apply the method of parabolic regularization and Galerkin's method to prove the existence of solutions to the mentioned problem and then prove the uniqueness of the weak solution by arguing by contradiction. The authors prove that the solution approaches 0 in L^2 (Ω) norm as t →∞.展开更多
In this paper, we extend the applications of proper orthogonal decomposition (POD) method, i.e., apply POD method to a mixed finite element (MFE) formulation naturally satisfied Brezz-Babu^ka for parabolic equatio...In this paper, we extend the applications of proper orthogonal decomposition (POD) method, i.e., apply POD method to a mixed finite element (MFE) formulation naturally satisfied Brezz-Babu^ka for parabolic equations, establish a reduced-order MFE formulation with lower dimensions and sufficiently high accuracy, and provide the error estimates between the reduced-order POD MFE solutions and the classical MFE solutions and the implementation of algorithm for solving reduced-order MFE formulation. Some numerical examples illustrate the fact that the results of numerical computation are consis- tent with theoretical conclusions. Moreover, it is shown that the new reduced-order MFE formulation based on POD method is feasible and efficient for solving MFE formulation for parabolic equations.展开更多
In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite ...In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite time under some assumptions on the density functions.展开更多
This paper puts forward a new method to solve the electromagnetic parabolic equation (EMPE) by taking the vertically-layered inhomogeneous characteristics of the atmospheric refractive index into account. First, the...This paper puts forward a new method to solve the electromagnetic parabolic equation (EMPE) by taking the vertically-layered inhomogeneous characteristics of the atmospheric refractive index into account. First, the Fourier transform and the convo- lution theorem are employed, and the second-order partial differential equation, i.e., the EMPE, in the height space is transformed into first-order constant coefficient differential equations in the frequency space. Then, by use of the lower triangular characteristics of the coefficient matrix, the numerical solutions are designed. Through constructing ana- lytical solutions to the EMPE, the feasibility of the new method is validated. Finally, the numerical solutions to the new method are compared with those of the commonly used split-step Fourier algorithm.展开更多
In this paper, the existence of solutions for discontinuous nonlinear parabolic differential IBVP is proved by using a more generalized monotone iterative method. Moreover, the convergence of this method is discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471262)the National Basic Research Program of China(Grant No.2012CB025904)the State Key Laboratory of Science and Engineering Computing and the Center for High Performance Computing of Northwestern Polytechnical University,China
文摘We study the hyperbolic–parabolic equations with rapidly oscillating coefficients. The formal second-order two-scale asymptotic expansion solutions are constructed by the multiscale asymptotic analysis. In addition, we theoretically explain the importance of the second-order two-scale solution by the error analysis in the pointwise sense. The associated explicit convergence rates are also obtained. Then a second-order two-scale numerical method based on the Newmark scheme is presented to solve the equations. Finally, some numerical examples are used to verify the effectiveness and efficiency of the multiscale numerical algorithm we proposed.
文摘This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.
文摘In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.
文摘This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.
文摘To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.
文摘In this paper we discuss the anti-periodic problem for a class of abstractnonlinear second-order evolution equations associated with maximal monotone operators in Hilbertspaces and give some new assumptions on operators. We establish the existence and uniqueness ofanti-periodic solutions, which improve andgeneralize the results that have been obtained. Finally weillustrate the abstract theory by discussing a simple example of an anti-periodic problem fornonlinear partial differential equations.
文摘Two dimensional parabolic stability equations (PSE) are numerically solved using expansions in orthogonal functions in the normal direction.The Chebyshev polynomials approximation,which is a very useful form of orthogonal expansions, is applied to solving parabolic stability equations. It is shown that results of great accuracy are effectively obtained.The availability of using Chebyshev approximations in parabolic stability equations is confirmed.
基金the post-doctoral funds of China and funds of State Educational Commission of China for returned scholars from abroad
文摘An optimization theoretic approach of coefficients in semilinear parabolic equation is presented. It is based on convex analysis techniques. General theorems on existence are proved in L1 setting. A necessary condition is given for the solutions of the parameter estimatioll problem.
基金supported by the Foundation of State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences(No.SKLA201303)the National Natural Science Foundation of China(Nos.11104044,11234002,and 11474073)
文摘The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze the sound propagation problem in a range-dependent waveguide(Lu and Zhu, 2007). However, Lu and Zhu only considered a standard fluid PE to demonstrate the capability of the PML and did not take improved one-way models into consideration. They applied a [1/1] Padé approximant to the parabolic equation. The higher-order PEs are more accurate than standard ones when a very large angle propagation is considered. As for range-dependent problems, the techniques to handle the vertical interface between adjacent regions are mainly energy conserving and single-scattering. In this paper, the PML technique is generalized to the higher order elastic PE, as is to the higher order fluid PE. The correction of energy conserving is used in range-dependent waveguides. Simulation is made in both acoustic cases and seismo-acoustic cases. Range-independent and range-dependent waveguides are both adopted to test the accuracy and efficiency of this method. The numerical results illustrate that a PML is much more effective than an artificial absorbing layer(ABL) both in acoustic and seismo-acoustic sound propagation modeling.
基金Supported by the National Natural Science Foundation of China (10671184)
文摘A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.
基金Project supported by the National Natural Science Foundation of China(Nos.10971203,11271340,and 11101381)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101110006)
文摘A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.
文摘In this paper, the Cauchy problem of the degenerate parabolic equationsis studied for some cases, and the explicit Holder estimates of the solution u with respectto x is given.
基金supported by the National Science Foundation of China(11671401)supported by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(17XNH106)
文摘Let G =(V, E) be a locally finite connected weighted graph, and ? be the usual graph Laplacian. In this article, we study blow-up problems for the nonlinear parabolic equation ut = ?u + f(u) on G. The blow-up phenomenons for ut = ?u + f(u) are discussed in terms of two cases:(i) an initial condition is given;(ii) a Dirichlet boundary condition is given. We prove that if f satisfies appropriate conditions, then the corresponding solutions will blow up in a finite time.
基金Supported by NSFC (10771085)Graduate Innovation Fund of Jilin University(20111034)the 985 program of Jilin University
文摘The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They apply the method of parabolic regularization and Galerkin's method to prove the existence of solutions to the mentioned problem and then prove the uniqueness of the weak solution by arguing by contradiction. The authors prove that the solution approaches 0 in L^2 (Ω) norm as t →∞.
基金supported by the National Science Foundation of China(11271127 and 11061009)Science Research Program of Guizhou(GJ[2011]2367)the Co-Construction Project of Beijing Municipal Commission of Education
文摘In this paper, we extend the applications of proper orthogonal decomposition (POD) method, i.e., apply POD method to a mixed finite element (MFE) formulation naturally satisfied Brezz-Babu^ka for parabolic equations, establish a reduced-order MFE formulation with lower dimensions and sufficiently high accuracy, and provide the error estimates between the reduced-order POD MFE solutions and the classical MFE solutions and the implementation of algorithm for solving reduced-order MFE formulation. Some numerical examples illustrate the fact that the results of numerical computation are consis- tent with theoretical conclusions. Moreover, it is shown that the new reduced-order MFE formulation based on POD method is feasible and efficient for solving MFE formulation for parabolic equations.
基金This work is supported in part by NNSF of China(10571126)in part by Program for New Century Excellent Talents in University
文摘In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite time under some assumptions on the density functions.
基金supported by the National Natural Science Foundation of China(Nos.41175025 and41275113)
文摘This paper puts forward a new method to solve the electromagnetic parabolic equation (EMPE) by taking the vertically-layered inhomogeneous characteristics of the atmospheric refractive index into account. First, the Fourier transform and the convo- lution theorem are employed, and the second-order partial differential equation, i.e., the EMPE, in the height space is transformed into first-order constant coefficient differential equations in the frequency space. Then, by use of the lower triangular characteristics of the coefficient matrix, the numerical solutions are designed. Through constructing ana- lytical solutions to the EMPE, the feasibility of the new method is validated. Finally, the numerical solutions to the new method are compared with those of the commonly used split-step Fourier algorithm.
文摘In this paper, the existence of solutions for discontinuous nonlinear parabolic differential IBVP is proved by using a more generalized monotone iterative method. Moreover, the convergence of this method is discussed.