This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th...This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.展开更多
With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even elimina...With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed.展开更多
This paper investigates the consensus problem of second-order nonlinear multi-agent systems (MASs) via the sliding mode control (SMC) approach. The velocity of each agent is assumed to be unmeasurable. A second-order ...This paper investigates the consensus problem of second-order nonlinear multi-agent systems (MASs) via the sliding mode control (SMC) approach. The velocity of each agent is assumed to be unmeasurable. A second-order sliding mode observer is designed to estimate the velocity. Then a distributed discontinuous control law based on first-order SMC is presented to solve the consensus problem. Moreover, to overcome the chatting problem, two controllers based on the boundary layer method and the super-twisting algorithm respectively are presented. It is shown that the MASs will achieve consensus under some given conditions. Some examples are provided to demonstrate the effectiveness of the proposed control laws.展开更多
Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertaint...Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme.展开更多
To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this st...To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.展开更多
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
In this paper, a combination of model based adaptive design along with adaptive linear output feedback controller is used to compensate for robotic manipulator with output deadzone nonlinearity. The deadzone dynamics ...In this paper, a combination of model based adaptive design along with adaptive linear output feedback controller is used to compensate for robotic manipulator with output deadzone nonlinearity. The deadzone dynamics are utilized to adaptively estimate the deadzone parameter and a switching function is designed to eliminate the error produced in the adaptive observer dynamics. The overall design of the closed loop system ensures stability in the BIBO criterion.展开更多
It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical...It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical system in the presence of the parametric uncertainty and external disturbance is addressed in the TVSMC framework. Firstly, an exponential TVSMC algorithm is designed and the main features are analyzed. Especially, the control parameter is obtained by solving an optimal problem. Subsequently, the global chattering problem in TVSMC is considered. To reduce the static error resulting from the continuous TVSMC algorithm, a disturbance observer based time-varying sliding mode control (DOTVSMC) algorithm is presented. The detailed design principle and the stability of the closed-loop system under the composite controller are provided. Simulation results verify the effectiveness of the proposed algorithm.展开更多
In this paper,we investigate formation tracking control of autonomous underwater vehicles(AUVs)with model parameter uncertainties and external disturbances.The external disturbances due to the wind,waves,and ocean cur...In this paper,we investigate formation tracking control of autonomous underwater vehicles(AUVs)with model parameter uncertainties and external disturbances.The external disturbances due to the wind,waves,and ocean currents are combined with the model parameter uncertainties as a compound disturbance.Then a disturbance observer(DO)is introduced to estimate the compound disturbance,which can be achieved within a finite time independent of the initial estimation error.Based on a DO,a novel fixed-time sliding control scheme is developed,by which the follower vehicle can track the leader vehicle with all the states globally stabilized within a given settling time.The effectiveness and performance of the method are demonstrated by numerical simulations.展开更多
This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher...This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.展开更多
Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control sy...Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR.展开更多
This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor(PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode ob...This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor(PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode observer(SMO). An adaptive observer gain was designed based on Lyapunov function and applied to solve the chattering problem caused by the discontinuous function of the SMO in the wide speed range. The cascade low-pass filter(LPF) with variable cut-off frequency was proposed to reduce the chattering problem and to attenuate the filtering capability of the SMO. In addition, the phase shift caused by the filter was counterbalanced by applying the variable phase delay compensation for the whole speed area. High accuracy estimation result of the rotor position was obtained in the experiment by applying the proposed estimation strategy.展开更多
In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)st...In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)strategy is developed for PMSM drive system by means of fractional order sliding mode observer(FOSMO).Based on FOISMC technology,a fractional order integral sliding mode regulator(FOISM-based regulator)is designed,and a global integral sliding mode surface design method is presented,which can guarantee the global robustness of the system.Combining fractional order theory and sliding mode control theory,the FOSMO is constructed to achieve better identification accuracy of the speed and rotor position.Meanwhile the sliding mode load observer is used to observe the load torque in real time,and the observed value is transmitted to speed regulator to improve the capability of accommodating the challenge of load disturbance.Simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
This paper proposes an adaptive sliding mode observer(ASMO)-based approach for wind turbines subject to simultaneous faults in sensors and actuators.The proposed approach enables the simultaneous detection of actuator...This paper proposes an adaptive sliding mode observer(ASMO)-based approach for wind turbines subject to simultaneous faults in sensors and actuators.The proposed approach enables the simultaneous detection of actuator and sensor faults without the need for any redundant hardware components.Additionally,wind speed variations are considered as unknown disturbances,thus eliminating the need for accurate measurement or estimation.The proposed ASMO enables the accurate estimation and reconstruction of the descriptor states and disturbances.The proposed design implements the principle of separation to enable the use of the nominal controller during faulty conditions.Fault tolerance is achieved by implementing a signal correction scheme to recover the nominal behavior.The performance of the proposed approach is validated using a 4.8 MW wind turbine benchmark model subject to various faults.Monte-Carlo analysis is also carried out to further evaluate the reliability and robustness of the proposed approach in the presence of measurement errors.Simplicity,ease of implementation and the decoupling property are among the positive features of the proposed approach.展开更多
An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adop...An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted, and the system is controlled by the digital signal processor ( DSP; TMS320LF2407 according to the control achieve closed loop operation of the motor, the stator theory of sliding mode observer. In order to magnetic field should be vertical with the rotor magnetic field and be synchronous with rotor rotating, so the position and speed of PMSM is estimated in real time and the estimated position is modified continuously. The simulation results indicate that the proposed observer has high precision is more robust to the parametric variation and load in estimation of PMSM position and speed, and torque disturbance.展开更多
Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improv...Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improved control strategy for PMSM based on a fuzzy sliding mode control(FSMC)and a two-stage filter sliding mode observer(TFSMO)is proposed.Firstly,a novel reaching law(NRL)used in the speed loop based on hyperbolic sine function is studied,and fuzzy control ideal is shown to achieve the self-turning of the parameter for the reaching law,thus a fuzzy integral sliding mode controller based on the novel reaching law is designed in speed loop.Then the suppression effect upon chattering caused by the novel reaching law is analyzed strictly by discrete equation.Secondly,in order to restrain the high frequency components and measurement noise in back-EMFs,a two-stage filter structure based on a variable cut-off frequency low-pass filter(VCF-LPF)and a modified back-EMF observer(MBO)is conceived,and the rotor position is compensated reasonably.As a result,a TFSMO is designed.The stability of the proposed control strategy is proved by Lyapunov Criterion.The simulation and experiment results show that,compared with traditional SMO,the controller suggested above can obtain very nice system respond when the motor starts and is subjected to external disturbances,and effectively improve the problems about torque ripple,chattering and the estimation accuracy of back-EMF.展开更多
The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is requ...The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is required to achieve precise trajectory tracking and positioning operations. Nevertheless,these tasks require precise and robust control,which is very difficult to attain due to the inherent nonlinear dynamic behavior of the electro-hydraulic system caused by flow-pressure characteristics and fluid volume control variations of the servo valve. The sliding mode controller(SMC)is a widely used nonlinear robust controller,yet uncertainties and delay in the output degrade the closed-loop system performance and cause system instability. This work proposes a robust controller scheme that counts for the output delay and the inherent parameter uncertainties. Namely,a sliding mode controller enhanced by time-delay compensating observer for a typical electro-hydraulic servo system is adapted. SMC is utilized for its robustness against servo system parameters’ uncertainty whereas a time-delay observer estimates the variable states of the controller(velocity and acceleration). The main contribution of this paper is improving on the closed loop performance of the electro hydraulic servo system and mitigating the delay time effects. Simulation results prove the robustness of this controller,which forces the position to track the desired path regardless of the changes of the amount of transport delay of the system’s states. The performance of the proposed controller is validated by repeating the simulation analysis while varying the amount of delay time.展开更多
To solve the chattering problem caused by discontinuous switching function in traditional sliding mode observer,a piecewise square root switching function with continuously varying characteristics is designed,and its ...To solve the chattering problem caused by discontinuous switching function in traditional sliding mode observer,a piecewise square root switching function with continuously varying characteristics is designed,and its stability is analyzed by using Lyapunov stability criterion.Secondly,according to the relationship among bus current,switching state and phase current,a single bus resistance sampling current reconstruction scheme without current sensors is adopted,which effectively reduces the cost of motor system.Finally,the feasibility and effectiveness of the proposed scheme are verified by simulation.展开更多
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金partially supported by the National Natural Science Foundation of China (62322315,61873237)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR22F030003)+2 种基金the National Key Rearch and Development Funding(2018YFB1403702)the Key Rearch and Development Programs of Zhejiang Province (2023C01224)Major Project of Science and Technology Innovation in Ningbo City (2019B1003)。
文摘This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.
文摘With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed.
基金supported by the National Natural Science Foundation of China(6137510561403334)
文摘This paper investigates the consensus problem of second-order nonlinear multi-agent systems (MASs) via the sliding mode control (SMC) approach. The velocity of each agent is assumed to be unmeasurable. A second-order sliding mode observer is designed to estimate the velocity. Then a distributed discontinuous control law based on first-order SMC is presented to solve the consensus problem. Moreover, to overcome the chatting problem, two controllers based on the boundary layer method and the super-twisting algorithm respectively are presented. It is shown that the MASs will achieve consensus under some given conditions. Some examples are provided to demonstrate the effectiveness of the proposed control laws.
基金Thework issupportedby the Key Scienceand Technology Programof Henan Province(Grant No.222102220104)the Science and Technology Key Project Foundation of Henan Provincial Education Department(Grant No.23A460014)the High Level Talent Foundation of Henan University of Technology(Grant No.2020BS043).
文摘Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme.
基金the Natural Science Foundation of Fujian,China(No.2021J01633).
文摘To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.
文摘In this paper, a combination of model based adaptive design along with adaptive linear output feedback controller is used to compensate for robotic manipulator with output deadzone nonlinearity. The deadzone dynamics are utilized to adaptively estimate the deadzone parameter and a switching function is designed to eliminate the error produced in the adaptive observer dynamics. The overall design of the closed loop system ensures stability in the BIBO criterion.
基金supported by the National Natural Science Foundation of China (10872030)the Technology Innovation Programme of Beijing Institute of Technology (CX0428)
文摘It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical system in the presence of the parametric uncertainty and external disturbance is addressed in the TVSMC framework. Firstly, an exponential TVSMC algorithm is designed and the main features are analyzed. Especially, the control parameter is obtained by solving an optimal problem. Subsequently, the global chattering problem in TVSMC is considered. To reduce the static error resulting from the continuous TVSMC algorithm, a disturbance observer based time-varying sliding mode control (DOTVSMC) algorithm is presented. The detailed design principle and the stability of the closed-loop system under the composite controller are provided. Simulation results verify the effectiveness of the proposed algorithm.
基金supported in part by the National Natural Science Foundation of China(61573077,U1808205)the National Key Research and Development Program of China(2017YFA0700300)
文摘In this paper,we investigate formation tracking control of autonomous underwater vehicles(AUVs)with model parameter uncertainties and external disturbances.The external disturbances due to the wind,waves,and ocean currents are combined with the model parameter uncertainties as a compound disturbance.Then a disturbance observer(DO)is introduced to estimate the compound disturbance,which can be achieved within a finite time independent of the initial estimation error.Based on a DO,a novel fixed-time sliding control scheme is developed,by which the follower vehicle can track the leader vehicle with all the states globally stabilized within a given settling time.The effectiveness and performance of the method are demonstrated by numerical simulations.
文摘This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.
基金supported by National Natural Science Foundation of China (Grant No. 61075081)State Key Laboratory of Robotics Technique and System Foundation,Harbin Institute of Technology,China(Grant No. SKIRS200802A02)
文摘Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR.
基金Project(2012(PS-2012-090))supported by the Pukyong National University Research Abroad Fund,Korea
文摘This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor(PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode observer(SMO). An adaptive observer gain was designed based on Lyapunov function and applied to solve the chattering problem caused by the discontinuous function of the SMO in the wide speed range. The cascade low-pass filter(LPF) with variable cut-off frequency was proposed to reduce the chattering problem and to attenuate the filtering capability of the SMO. In addition, the phase shift caused by the filter was counterbalanced by applying the variable phase delay compensation for the whole speed area. High accuracy estimation result of the rotor position was obtained in the experiment by applying the proposed estimation strategy.
基金National Natural Science Foundation of China(No.1461023)Gansu Provincial Education Department Project(No.2016B-036)Changjiang Scholars and Innovative Research Team(No.RT_16R36)
文摘In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)strategy is developed for PMSM drive system by means of fractional order sliding mode observer(FOSMO).Based on FOISMC technology,a fractional order integral sliding mode regulator(FOISM-based regulator)is designed,and a global integral sliding mode surface design method is presented,which can guarantee the global robustness of the system.Combining fractional order theory and sliding mode control theory,the FOSMO is constructed to achieve better identification accuracy of the speed and rotor position.Meanwhile the sliding mode load observer is used to observe the load torque in real time,and the observed value is transmitted to speed regulator to improve the capability of accommodating the challenge of load disturbance.Simulation results validate the feasibility and effectiveness of the proposed scheme.
文摘This paper proposes an adaptive sliding mode observer(ASMO)-based approach for wind turbines subject to simultaneous faults in sensors and actuators.The proposed approach enables the simultaneous detection of actuator and sensor faults without the need for any redundant hardware components.Additionally,wind speed variations are considered as unknown disturbances,thus eliminating the need for accurate measurement or estimation.The proposed ASMO enables the accurate estimation and reconstruction of the descriptor states and disturbances.The proposed design implements the principle of separation to enable the use of the nominal controller during faulty conditions.Fault tolerance is achieved by implementing a signal correction scheme to recover the nominal behavior.The performance of the proposed approach is validated using a 4.8 MW wind turbine benchmark model subject to various faults.Monte-Carlo analysis is also carried out to further evaluate the reliability and robustness of the proposed approach in the presence of measurement errors.Simplicity,ease of implementation and the decoupling property are among the positive features of the proposed approach.
基金supported by National Natural Science Foundation of China(61125306,61273092,61301035,61304018,and 61411130160)National HighTechnology Research and Development Program of China(2014AA051901)+4 种基金Tianjin Science and Technology Supporting Program(14JCQNJC05400)Research Innovation Program of Tianjin University(2013XQ0101)Hubei Science and Technology Supporting Program(XYJ2014000314)Science Foundation of China Supported by Science and Technology on Aircraft Control Laboratory(20125848004)China Post-doctoral Science Foundation(2014M561559)
文摘An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted, and the system is controlled by the digital signal processor ( DSP; TMS320LF2407 according to the control achieve closed loop operation of the motor, the stator theory of sliding mode observer. In order to magnetic field should be vertical with the rotor magnetic field and be synchronous with rotor rotating, so the position and speed of PMSM is estimated in real time and the estimated position is modified continuously. The simulation results indicate that the proposed observer has high precision is more robust to the parametric variation and load in estimation of PMSM position and speed, and torque disturbance.
基金National Key R&D Program of China(No.2018YFB1201602)。
文摘Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improved control strategy for PMSM based on a fuzzy sliding mode control(FSMC)and a two-stage filter sliding mode observer(TFSMO)is proposed.Firstly,a novel reaching law(NRL)used in the speed loop based on hyperbolic sine function is studied,and fuzzy control ideal is shown to achieve the self-turning of the parameter for the reaching law,thus a fuzzy integral sliding mode controller based on the novel reaching law is designed in speed loop.Then the suppression effect upon chattering caused by the novel reaching law is analyzed strictly by discrete equation.Secondly,in order to restrain the high frequency components and measurement noise in back-EMFs,a two-stage filter structure based on a variable cut-off frequency low-pass filter(VCF-LPF)and a modified back-EMF observer(MBO)is conceived,and the rotor position is compensated reasonably.As a result,a TFSMO is designed.The stability of the proposed control strategy is proved by Lyapunov Criterion.The simulation and experiment results show that,compared with traditional SMO,the controller suggested above can obtain very nice system respond when the motor starts and is subjected to external disturbances,and effectively improve the problems about torque ripple,chattering and the estimation accuracy of back-EMF.
文摘The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is required to achieve precise trajectory tracking and positioning operations. Nevertheless,these tasks require precise and robust control,which is very difficult to attain due to the inherent nonlinear dynamic behavior of the electro-hydraulic system caused by flow-pressure characteristics and fluid volume control variations of the servo valve. The sliding mode controller(SMC)is a widely used nonlinear robust controller,yet uncertainties and delay in the output degrade the closed-loop system performance and cause system instability. This work proposes a robust controller scheme that counts for the output delay and the inherent parameter uncertainties. Namely,a sliding mode controller enhanced by time-delay compensating observer for a typical electro-hydraulic servo system is adapted. SMC is utilized for its robustness against servo system parameters’ uncertainty whereas a time-delay observer estimates the variable states of the controller(velocity and acceleration). The main contribution of this paper is improving on the closed loop performance of the electro hydraulic servo system and mitigating the delay time effects. Simulation results prove the robustness of this controller,which forces the position to track the desired path regardless of the changes of the amount of transport delay of the system’s states. The performance of the proposed controller is validated by repeating the simulation analysis while varying the amount of delay time.
文摘To solve the chattering problem caused by discontinuous switching function in traditional sliding mode observer,a piecewise square root switching function with continuously varying characteristics is designed,and its stability is analyzed by using Lyapunov stability criterion.Secondly,according to the relationship among bus current,switching state and phase current,a single bus resistance sampling current reconstruction scheme without current sensors is adopted,which effectively reduces the cost of motor system.Finally,the feasibility and effectiveness of the proposed scheme are verified by simulation.