To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal...To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal orders,or extending stencil widths,are avoided in the new optimized schemes by utilizing fluxes from both cell-edges and cell-nodes.Optimizations are implemented with Fourier analysis for linear schemes and the approximate dispersion relation(ADR)for nonlinear schemes.Classical difference schemes are restored near discontinuities to suppress numerical oscillations with use of a shock sensor based on smoothness indicators.The results of several benchmark numerical tests indicate that the new optimized difference schemes outperform the classical schemes,in terms of accuracy and resolution for smooth wave and vortex,especially for long-time simulations.Using optimized schemes increases the total CPU time by less than 4%.展开更多
Let {(D n, FFFn),n/->1} be a sequence of martingale differences and {a ni, 1≤i≤n,n≥1} be an array of real constants. Almost sure convergence for the row sums ?i = 1n ani D1\sum\limits_{i = 1}^n {a_{ni} D_1 } are...Let {(D n, FFFn),n/->1} be a sequence of martingale differences and {a ni, 1≤i≤n,n≥1} be an array of real constants. Almost sure convergence for the row sums ?i = 1n ani D1\sum\limits_{i = 1}^n {a_{ni} D_1 } are discussed. We also discuss complete convergence for the moving average processes underB-valued martingale differences assumption.展开更多
In this article, using generalized weighted mean and difference matrix of order m, we introduce the paranormed sequence space l(u, v, p; △(m)), which consist of the sequences whose generalized weighted △(m)-di...In this article, using generalized weighted mean and difference matrix of order m, we introduce the paranormed sequence space l(u, v, p; △(m)), which consist of the sequences whose generalized weighted △(m)-difference means are in the linear space l(p) defined by I.J.Maddox. Also, we determine the basis of this space and compute its α-, β- and γ-duals. Further, we give the characterization of the classes of matrix mappings from l(u, v, p, △(m)) to l∞, c, and co. Finally, we apply the Hausdorff measure of noncompacness to characterize some classes of compact operators given by matrices on the space lp(U, v, △(m)) (1 ≤ p 〈 ∞).展开更多
In the study by Baliarsingh and Dutta [Internat. J.Anal., Vol.2014(2014), Article ID 786437], the authors computed the spectrum and the fine spectrum of the product operator G (u, v; A) over the sequence space e1....In the study by Baliarsingh and Dutta [Internat. J.Anal., Vol.2014(2014), Article ID 786437], the authors computed the spectrum and the fine spectrum of the product operator G (u, v; A) over the sequence space e1. The product operator G (u, v; △) over l1 is defined by (G(u,v;△)x)k=^k∑i=0ukvi(xi- xi-1) with xk = 0 for all k 〈 0, where x = (xk)∈e1,and u and v axe either constant or strictly decreasing sequences of positive real numbers satisfying certain conditions. In this article we give some improvements of the computation of the spectrum of the operator G (u, v; △) on the sequence space gl.展开更多
Let {Xn, n≥1} be a martingale difference sequence and {a nk , 1?k?n,n?1} an array of constant real numbers. The limiting behavior of weighted partial sums ∑ k=1 n a nk X k is investigated and some new results are ob...Let {Xn, n≥1} be a martingale difference sequence and {a nk , 1?k?n,n?1} an array of constant real numbers. The limiting behavior of weighted partial sums ∑ k=1 n a nk X k is investigated and some new results are obtained.展开更多
A second-order divided difference filter (SDDF) is derived for integrating line of sight measurement from vision sensor with acceleration and angular rate measurements of the follower to estimate the precise relative ...A second-order divided difference filter (SDDF) is derived for integrating line of sight measurement from vision sensor with acceleration and angular rate measurements of the follower to estimate the precise relative position,velocity and attitude of two unmanned aerial vehicles (UAVs).The second-order divided difference filter which makes use of multidimensional interpolation formulations to approximate the nonlinear transformations could achieve more accurate estimation and faster convergence from inaccurate initial conditions than standard extended Kalman filter.The filter formulation is based on relative motion equations.The global attitude parameterization is given by quarternion,while a generalized three-dimensional attitude representation is used to define the local attitude error.Simulation results are shown to compare the performance of the second-order divided difference filter with a standard extended Kalman filter approach.展开更多
A dual-time method is introduced to calculate the unsteady flow in a certain vibrating flat cascade. An implicit lower-upper symmetric-gauss-seidel scheme(LU-SGS) is applied for time stepping in pseudo time domains,...A dual-time method is introduced to calculate the unsteady flow in a certain vibrating flat cascade. An implicit lower-upper symmetric-gauss-seidel scheme(LU-SGS) is applied for time stepping in pseudo time domains, and the convection items are discretized with the spatial three-order weighted non-oscillatory and non-free-parameter dissipation difference (WNND) scheme. The turbulence model adopts q-co low-Reynolds-number model. The frequency specmuns of lift coefficients and the unsteady pressure-difference coefficients at different spanwise heights as well as the entropy contours at blade tips on different vibrating instants, are obtained. By the analysis of frequency specmuns of lift coefficients at three spanwise heights, it is considered that there exist obvious non-linear perturbations in the flow induced by the vibrating, and the perturbation frequencies are higher than the basic frequency. The entropy contours at blade tips at different times display an intensively unsteady attribute of the flow under large amplitudes.展开更多
In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the origi...In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.展开更多
In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical ...In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme.展开更多
In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbol...In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbolic conservation laws.For the purpose of designing increasingly high-order finite difference WENO schemes,the equal-sized stencils are becoming more and more wider.The more we use wider candidate stencils,the bigger the probability of discontinuities lies in all stencils.Therefore,one innovation of these new WENO schemes is to introduce a new splitting stencil methodology to divide some fourpoint or five-point stencils into several smaller three-point stencils.By the usage of this new methodology in high-order spatial reconstruction procedure,we get different degree polynomials defined on these unequal-sized stencils,and calculate the linear weights,smoothness indicators,and nonlinear weights as specified in Jiang and Shu(J.Comput.Phys.126:202228,1996).Since the difference between the nonlinear weights and the linear weights is too big to keep the optimal order of accuracy in smooth regions,another crucial innovation is to present the new mapping functions which are used to obtain the mapped nonlinear weights and decrease the difference quantity between the mapped nonlinear weights and the linear weights,so as to keep the optimal order of accuracy in smooth regions.These new MWENO schemes can also be applied to compute some extreme examples,such as the double rarefaction wave problem,the Sedov blast wave problem,and the Leblanc problem with a normal CFL number.Extensive numerical results are provided to illustrate the good performance of the new finite difference MWENO schemes.展开更多
The simple adjusted estimator of risk difference in each center is easy constructed by adding a value c on the number of successes and on the number of failures in each arm of the proportion estimator. Assessing a tre...The simple adjusted estimator of risk difference in each center is easy constructed by adding a value c on the number of successes and on the number of failures in each arm of the proportion estimator. Assessing a treatment effect in multi-center studies, we propose minimum MSE (mean square error) weights of an adjusted summary estimate of risk difference under the assumption of a constant of common risk difference over all centers. To evaluate the performance of the proposed weights, we compare not only in terms of estimation based on bias, variance, and MSE with two other conventional weights, such as the Cochran-Mantel-Haenszel weights and the inverse variance (weighted least square) weights, but also we compare the potential tests based on the type I error probability and the power of test in a variety of situations. The results illustrate that the proposed weights in terms of point estimation and hypothesis testing perform well and should be recommended to use as an alternative choice. Finally, two applications are illustrated for the practical use.展开更多
Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of...Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p-th(1<p<2)moments.Moreover,the complete convergence and strong law of large numbers are established under some mild conditions.An application to multivariate simple linear regression model is also provided.展开更多
In this study, we use analytical methods and Sylvester inertia theorem to research a class of second order difference operators with indefinite weights and coupled boundary conditions. The eigenvalue problem with sign...In this study, we use analytical methods and Sylvester inertia theorem to research a class of second order difference operators with indefinite weights and coupled boundary conditions. The eigenvalue problem with sign-changing weight has lasted a long time. The number of eigenvalues and the number of sign changes of the corresponding eigenfunctions of discrete equations under different boundary conditions are mainly studied. For the discrete Sturm-Liouville problems, similar conclusions about the properties of eigenvalues and the number of sign changes of the corresponding eigenfunctions are obtained under different boundary conditions, such as periodic boundary conditions, antiperiodic boundary conditions and separated boundary conditions etc. The purpose of this paper is to extend the similar conclusion to the coupled boundary conditions, which is of great significance to the perfection of the theory of the discrete Sturm-Liouville problems. We came to the following conclusions: first, the eigenvalues of the problem are real and single, the number of the positive eigenvalues is equal to the number of positive elements in the weight function, and the number of negative eigenvalues is equal to the number of negative elements in the weight function. Second, under some conditions, we obtain the sign change of the eigenfunction corresponding to the j-th positive/negative eigenvalue.展开更多
In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the ...In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.展开更多
Web services is one of the basic network services, whose availability evaluation is of great significance to the promotion of users’ experience. This paper focuses on the problem of availability evaluation of Web ser...Web services is one of the basic network services, whose availability evaluation is of great significance to the promotion of users’ experience. This paper focuses on the problem of availability evaluation of Web services and proposes a method for availability evaluation of Web services using improved grey correlation analysis with entropy difference and weight (EWGCA).This method is based on grey correlation analysis, and use entropy difference to illustrate the changes of availability, set weight to quantize availability requirements of different operations or transactions in services. Through simulation experiment in high load scenarios for Web services, the experiment result shows that our method can realize hierarchical description and overall evaluation for availability of Web services accurately in the case of smaller test sample volumes or uncertain data even in the field of big data.展开更多
In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws...In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.展开更多
Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditi...Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.展开更多
Memory-based collaborative recommender system (CRS) computes the similarity between users based on their declared ratings. However, not all ratings are of the same importance to the user. The set of ratings each user ...Memory-based collaborative recommender system (CRS) computes the similarity between users based on their declared ratings. However, not all ratings are of the same importance to the user. The set of ratings each user weights highly differs from user to user according to his mood and taste. This is usually reflected in the user’s rating scale. Accordingly, many efforts have been done to introduce weights to the similarity measures of CRSs. This paper proposes fuzzy weightings for the most common similarity measures for memory-based CRSs. Fuzzy weighting can be considered as a learning mechanism for capturing the preferences of users for ratings. Comparing with genetic algorithm learning, fuzzy weighting is fast, effective and does not require any more space. Moreover, fuzzy weightings based on the rating deviations from the user’s mean of ratings take into account the different rating scales of different users. The experimental results show that fuzzy weightings obviously improve the CRSs performance to a good extent.展开更多
Tarnavas established mixed weighted power mean inequality in 1999. A separation of weighted power mean inequslity was derived in this paper. As its applications, some separations of other inequalities were given.
基金Project supported by the National Key Project(No.GJXM92579)the Defense Industrial Technology Development Program(No.C1520110002)the State Administration of Science,Technology and Industry for National Defence,China。
文摘To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal orders,or extending stencil widths,are avoided in the new optimized schemes by utilizing fluxes from both cell-edges and cell-nodes.Optimizations are implemented with Fourier analysis for linear schemes and the approximate dispersion relation(ADR)for nonlinear schemes.Classical difference schemes are restored near discontinuities to suppress numerical oscillations with use of a shock sensor based on smoothness indicators.The results of several benchmark numerical tests indicate that the new optimized difference schemes outperform the classical schemes,in terms of accuracy and resolution for smooth wave and vortex,especially for long-time simulations.Using optimized schemes increases the total CPU time by less than 4%.
文摘Let {(D n, FFFn),n/->1} be a sequence of martingale differences and {a ni, 1≤i≤n,n≥1} be an array of real constants. Almost sure convergence for the row sums ?i = 1n ani D1\sum\limits_{i = 1}^n {a_{ni} D_1 } are discussed. We also discuss complete convergence for the moving average processes underB-valued martingale differences assumption.
文摘In this article, using generalized weighted mean and difference matrix of order m, we introduce the paranormed sequence space l(u, v, p; △(m)), which consist of the sequences whose generalized weighted △(m)-difference means are in the linear space l(p) defined by I.J.Maddox. Also, we determine the basis of this space and compute its α-, β- and γ-duals. Further, we give the characterization of the classes of matrix mappings from l(u, v, p, △(m)) to l∞, c, and co. Finally, we apply the Hausdorff measure of noncompacness to characterize some classes of compact operators given by matrices on the space lp(U, v, △(m)) (1 ≤ p 〈 ∞).
文摘In the study by Baliarsingh and Dutta [Internat. J.Anal., Vol.2014(2014), Article ID 786437], the authors computed the spectrum and the fine spectrum of the product operator G (u, v; A) over the sequence space e1. The product operator G (u, v; △) over l1 is defined by (G(u,v;△)x)k=^k∑i=0ukvi(xi- xi-1) with xk = 0 for all k 〈 0, where x = (xk)∈e1,and u and v axe either constant or strictly decreasing sequences of positive real numbers satisfying certain conditions. In this article we give some improvements of the computation of the spectrum of the operator G (u, v; △) on the sequence space gl.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .10 0 710 5 8)and (No .10 0 710 19)
文摘Let {Xn, n≥1} be a martingale difference sequence and {a nk , 1?k?n,n?1} an array of constant real numbers. The limiting behavior of weighted partial sums ∑ k=1 n a nk X k is investigated and some new results are obtained.
基金Sponsored by the Aerospace Technology Innovation Funding(Grant No. CASC0209)
文摘A second-order divided difference filter (SDDF) is derived for integrating line of sight measurement from vision sensor with acceleration and angular rate measurements of the follower to estimate the precise relative position,velocity and attitude of two unmanned aerial vehicles (UAVs).The second-order divided difference filter which makes use of multidimensional interpolation formulations to approximate the nonlinear transformations could achieve more accurate estimation and faster convergence from inaccurate initial conditions than standard extended Kalman filter.The filter formulation is based on relative motion equations.The global attitude parameterization is given by quarternion,while a generalized three-dimensional attitude representation is used to define the local attitude error.Simulation results are shown to compare the performance of the second-order divided difference filter with a standard extended Kalman filter approach.
基金This Project is supported by National Natural Science Foundation of China (No.50776056)National Hi-tech Research and Development Program of China (863 Program,No.2006AA05Z250).
文摘A dual-time method is introduced to calculate the unsteady flow in a certain vibrating flat cascade. An implicit lower-upper symmetric-gauss-seidel scheme(LU-SGS) is applied for time stepping in pseudo time domains, and the convection items are discretized with the spatial three-order weighted non-oscillatory and non-free-parameter dissipation difference (WNND) scheme. The turbulence model adopts q-co low-Reynolds-number model. The frequency specmuns of lift coefficients and the unsteady pressure-difference coefficients at different spanwise heights as well as the entropy contours at blade tips on different vibrating instants, are obtained. By the analysis of frequency specmuns of lift coefficients at three spanwise heights, it is considered that there exist obvious non-linear perturbations in the flow induced by the vibrating, and the perturbation frequencies are higher than the basic frequency. The entropy contours at blade tips at different times display an intensively unsteady attribute of the flow under large amplitudes.
文摘In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
文摘In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.
基金the National Natural Science Foundation of China under Grant Number NSFC 11801302Tsinghua University Initiative Scientific Research Program.Yang Yang is supported by the NSF Grant DMS-1818467.
文摘In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme.
基金the NSFC grant 11872210 and the Science Challenge Project,No.TZ2016002the NSFC Grant 11926103 when he visited Tianyuan Mathematical Center in Southeast China,Xiamen 361005,Fujian,Chinathe NSFC Grant 12071392 and the Science Challenge Project,No.TZ2016002.
文摘In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbolic conservation laws.For the purpose of designing increasingly high-order finite difference WENO schemes,the equal-sized stencils are becoming more and more wider.The more we use wider candidate stencils,the bigger the probability of discontinuities lies in all stencils.Therefore,one innovation of these new WENO schemes is to introduce a new splitting stencil methodology to divide some fourpoint or five-point stencils into several smaller three-point stencils.By the usage of this new methodology in high-order spatial reconstruction procedure,we get different degree polynomials defined on these unequal-sized stencils,and calculate the linear weights,smoothness indicators,and nonlinear weights as specified in Jiang and Shu(J.Comput.Phys.126:202228,1996).Since the difference between the nonlinear weights and the linear weights is too big to keep the optimal order of accuracy in smooth regions,another crucial innovation is to present the new mapping functions which are used to obtain the mapped nonlinear weights and decrease the difference quantity between the mapped nonlinear weights and the linear weights,so as to keep the optimal order of accuracy in smooth regions.These new MWENO schemes can also be applied to compute some extreme examples,such as the double rarefaction wave problem,the Sedov blast wave problem,and the Leblanc problem with a normal CFL number.Extensive numerical results are provided to illustrate the good performance of the new finite difference MWENO schemes.
文摘The simple adjusted estimator of risk difference in each center is easy constructed by adding a value c on the number of successes and on the number of failures in each arm of the proportion estimator. Assessing a treatment effect in multi-center studies, we propose minimum MSE (mean square error) weights of an adjusted summary estimate of risk difference under the assumption of a constant of common risk difference over all centers. To evaluate the performance of the proposed weights, we compare not only in terms of estimation based on bias, variance, and MSE with two other conventional weights, such as the Cochran-Mantel-Haenszel weights and the inverse variance (weighted least square) weights, but also we compare the potential tests based on the type I error probability and the power of test in a variety of situations. The results illustrate that the proposed weights in terms of point estimation and hypothesis testing perform well and should be recommended to use as an alternative choice. Finally, two applications are illustrated for the practical use.
基金Supported by the Outstanding Youth Research Project of Anhui Colleges(Grant No.2022AH030156)。
文摘Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p-th(1<p<2)moments.Moreover,the complete convergence and strong law of large numbers are established under some mild conditions.An application to multivariate simple linear regression model is also provided.
文摘In this study, we use analytical methods and Sylvester inertia theorem to research a class of second order difference operators with indefinite weights and coupled boundary conditions. The eigenvalue problem with sign-changing weight has lasted a long time. The number of eigenvalues and the number of sign changes of the corresponding eigenfunctions of discrete equations under different boundary conditions are mainly studied. For the discrete Sturm-Liouville problems, similar conclusions about the properties of eigenvalues and the number of sign changes of the corresponding eigenfunctions are obtained under different boundary conditions, such as periodic boundary conditions, antiperiodic boundary conditions and separated boundary conditions etc. The purpose of this paper is to extend the similar conclusion to the coupled boundary conditions, which is of great significance to the perfection of the theory of the discrete Sturm-Liouville problems. We came to the following conclusions: first, the eigenvalues of the problem are real and single, the number of the positive eigenvalues is equal to the number of positive elements in the weight function, and the number of negative eigenvalues is equal to the number of negative elements in the weight function. Second, under some conditions, we obtain the sign change of the eigenfunction corresponding to the j-th positive/negative eigenvalue.
文摘In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.
基金This research is supported by the National Natural Science Foundation of China (61370212), the Research Fund for the Doctoral Program of Higher Education of China (20122304130002), the Natural Science Foundation of Heilongjiang Province (ZD 201102) and the Fundamental Research Fund for the Central Universities (HEUCFZ1213, HEUCF100601).
文摘Web services is one of the basic network services, whose availability evaluation is of great significance to the promotion of users’ experience. This paper focuses on the problem of availability evaluation of Web services and proposes a method for availability evaluation of Web services using improved grey correlation analysis with entropy difference and weight (EWGCA).This method is based on grey correlation analysis, and use entropy difference to illustrate the changes of availability, set weight to quantize availability requirements of different operations or transactions in services. Through simulation experiment in high load scenarios for Web services, the experiment result shows that our method can realize hierarchical description and overall evaluation for availability of Web services accurately in the case of smaller test sample volumes or uncertain data even in the field of big data.
基金Project supported by the National Natural Science Foundation of China(No.11571366)the Basic Research Foundation of National Numerical Wind Tunnel Project(No.NNW2018-ZT4A08)
文摘In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.
基金supported by National Natural Science Foundation of China(11101244,11271231)National Tackling Key Problems Program(20050200069)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.
文摘Memory-based collaborative recommender system (CRS) computes the similarity between users based on their declared ratings. However, not all ratings are of the same importance to the user. The set of ratings each user weights highly differs from user to user according to his mood and taste. This is usually reflected in the user’s rating scale. Accordingly, many efforts have been done to introduce weights to the similarity measures of CRSs. This paper proposes fuzzy weightings for the most common similarity measures for memory-based CRSs. Fuzzy weighting can be considered as a learning mechanism for capturing the preferences of users for ratings. Comparing with genetic algorithm learning, fuzzy weighting is fast, effective and does not require any more space. Moreover, fuzzy weightings based on the rating deviations from the user’s mean of ratings take into account the different rating scales of different users. The experimental results show that fuzzy weightings obviously improve the CRSs performance to a good extent.
基金Project supported by National Natural Science Foundation of China (Grant No. 10271071)
文摘Tarnavas established mixed weighted power mean inequality in 1999. A separation of weighted power mean inequslity was derived in this paper. As its applications, some separations of other inequalities were given.