In order to control the locomotive wheel(axle) load distribution, a shimming process to adjust the locomotive secondary spring loads was heretofore developed. An immune dominance clonal selection multi-objective algor...In order to control the locomotive wheel(axle) load distribution, a shimming process to adjust the locomotive secondary spring loads was heretofore developed. An immune dominance clonal selection multi-objective algorithm based on the artificial immune system was presented to further improve the performance of the optimization algorithm for locomotive secondary spring load adjustment, especially to solve the lack of control on the output shim quantity. The algorithm was designed into a two-level optimization structure according to the preferences of the problem, and the priori knowledge of the problem was used as the immune dominance. Experiments on various types of locomotives show that owing to the novel algorithm, the shim quantity is cut down by 30% 60% and the calculation time is about 90% less while the secondary spring load distribution is controlled on the same level as before. The application of this optimization algorithm can significantly improve the availability and efficiency of the secondary spring adjustment process.展开更多
Textile reinforced concrete(TRC)has good bearing capacity,crack resistance and corrosion resistance and it is suitable for repairing and reinforcing concrete structures in harsh marine environments.The four-point bend...Textile reinforced concrete(TRC)has good bearing capacity,crack resistance and corrosion resistance and it is suitable for repairing and reinforcing concrete structures in harsh marine environments.The four-point bending method was used to analyze the influence of the salt concentration,the damage degree and the coupled effect of the environment and load on the bending performance of TRC-strengthened beams with a secondary load.The results showed that as the salt concentration increased,the crack width and mid-span deflection of the beam quickly increased,and its bearing capacity decreased.As the damage degree increased,the early-stage crack development and mid-span deflection of the beam were less affected and the ultimate bearing capacity significantly decreased.In addition,the coupled effect of the environment and load on the beams with a secondary load was significant.As the sustained load increased,the ultimate bearing capacity of the strengthened beam decreased,and cracks developed faster in the later stage.In addition,the mid-span deflection of the beam decreased at the same load level because of the influence of the initial deflection due to the sustained load corrosion.展开更多
To ensure running safety,the secondary spring loads of railway vehicles must be well equalized.Due to the coupling interactive effects of these hyper static suspended structures,the equalization adjustment through shi...To ensure running safety,the secondary spring loads of railway vehicles must be well equalized.Due to the coupling interactive effects of these hyper static suspended structures,the equalization adjustment through shimming procedure is quite complex.Therefore,an effective and reliable method in application is developed in this paper.Firstly,the best regulation of spring load is solved based on a mechanical model of the secondary suspension system,providing a target for actual adjustment.To reveal the relationship between secondary spring load distribution and shim quantity sequence,a forecasting model is constructed and then modified experimentally with consideration of car body’s elastic deformation.Further,a gradient-based algorithm with a momentum operation is proposed for the load optimization.Effectiveness of the whole method has been verified on a test rig.It is experimentally confirmed that this research provides an important basis for achieving an optimal regulation of spring load distribution for multiple types of railway vehicles.展开更多
Feasibility of using pre-stressed carbon fiber plates to strengthen reinforced concrete beams was studied. Based on the characteristics of carbon fiber plates, we developed a pre-stress clamp and a device for applying...Feasibility of using pre-stressed carbon fiber plates to strengthen reinforced concrete beams was studied. Based on the characteristics of carbon fiber plates, we developed a pre-stress clamp and a device for applying the pre-stress. Contrast tests were conducted between ordinary carbon fiber plates and a pre-stressed carbon fiber plate and between secondary loaded carbon fiber plates and a concrete beam strengthened with a secondary loaded carbon fiber plate. On this basis, we analyzed the failure pattern, the width of cracks and their distribution, the cracking load, the yield load, the limit load and the relation between load and deflec- tion. The results indicate that using pre-stressed carbon fiber plates to strengthen concrete beams is feasible and effective.展开更多
Honji instability and ringing of offshore structrures are two different phenomena. Honji instability occurs at a circular cylinder in transverse periodic finite motion in a water tank. It is superposed on the streamin...Honji instability and ringing of offshore structrures are two different phenomena. Honji instability occurs at a circular cylinder in transverse periodic finite motion in a water tank. It is superposed on the streaming flow induced by the cylinder’s boundary layer. Its oscillation period is half of the period of the cylinder oscillation. Finite volume calculations of the filtered Navier-Stokes equations visualize the three-dimensional instability, where fluid particles transported by the circumferencial roll pairs exhibit a periodic mushroom-like pattern. Force is the same with and without the Honji instability. The large eddy simulation calculations for high Reynolds number support a drag coefficient in accordance with the Stokes-Wang solution below separation and conform with experimental measurements of the damping force on a harmonically oscillating cylinder. Ringing of offshore structures are vibrations which appear at natural frequencies and concern fatigue. It is generated by a higher harmonic force oscillating with frequency being 3-4 times the fundamental wave frequency. Together with a strong inertia load in phase with the incoming wave’s acceleration, a secondary load cycle appears in strong seas when the wave crest leaves the structure; this occurs about 1/4 wave period after the main force peak, it starts when the wave crest is about one cylinder radius behind the cylinder, lasts for about 15-20 percent of the wave period and has a magnitude up to 11 % of the peak-to-peak total force. It is a gravity effect and appears in strong irregular seas when kA > 0.18 and um/√gD > 0.4 (k wavenumber, A amplitude, um maximal wave induced velocity, g acceleration of gravity, D cylinder diameter).展开更多
基金Project(51305467)supported by the National Natural Science Foundation of ChinaProject(12JJ4050)supported by the Natural Science Foundation of Hunan Province,China
文摘In order to control the locomotive wheel(axle) load distribution, a shimming process to adjust the locomotive secondary spring loads was heretofore developed. An immune dominance clonal selection multi-objective algorithm based on the artificial immune system was presented to further improve the performance of the optimization algorithm for locomotive secondary spring load adjustment, especially to solve the lack of control on the output shim quantity. The algorithm was designed into a two-level optimization structure according to the preferences of the problem, and the priori knowledge of the problem was used as the immune dominance. Experiments on various types of locomotives show that owing to the novel algorithm, the shim quantity is cut down by 30% 60% and the calculation time is about 90% less while the secondary spring load distribution is controlled on the same level as before. The application of this optimization algorithm can significantly improve the availability and efficiency of the secondary spring adjustment process.
基金Project(2017XKZD09)supported by the Fundamental Research Funds for the Central Universities,China
文摘Textile reinforced concrete(TRC)has good bearing capacity,crack resistance and corrosion resistance and it is suitable for repairing and reinforcing concrete structures in harsh marine environments.The four-point bending method was used to analyze the influence of the salt concentration,the damage degree and the coupled effect of the environment and load on the bending performance of TRC-strengthened beams with a secondary load.The results showed that as the salt concentration increased,the crack width and mid-span deflection of the beam quickly increased,and its bearing capacity decreased.As the damage degree increased,the early-stage crack development and mid-span deflection of the beam were less affected and the ultimate bearing capacity significantly decreased.In addition,the coupled effect of the environment and load on the beams with a secondary load was significant.As the sustained load increased,the ultimate bearing capacity of the strengthened beam decreased,and cracks developed faster in the later stage.In addition,the mid-span deflection of the beam decreased at the same load level because of the influence of the initial deflection due to the sustained load corrosion.
基金Project(51305467)supported by the National Natural Science Foundation of ChinaProject(12JJ4050)supported by the Natural Science Foundation of Hunan Province,China
文摘To ensure running safety,the secondary spring loads of railway vehicles must be well equalized.Due to the coupling interactive effects of these hyper static suspended structures,the equalization adjustment through shimming procedure is quite complex.Therefore,an effective and reliable method in application is developed in this paper.Firstly,the best regulation of spring load is solved based on a mechanical model of the secondary suspension system,providing a target for actual adjustment.To reveal the relationship between secondary spring load distribution and shim quantity sequence,a forecasting model is constructed and then modified experimentally with consideration of car body’s elastic deformation.Further,a gradient-based algorithm with a momentum operation is proposed for the load optimization.Effectiveness of the whole method has been verified on a test rig.It is experimentally confirmed that this research provides an important basis for achieving an optimal regulation of spring load distribution for multiple types of railway vehicles.
文摘Feasibility of using pre-stressed carbon fiber plates to strengthen reinforced concrete beams was studied. Based on the characteristics of carbon fiber plates, we developed a pre-stress clamp and a device for applying the pre-stress. Contrast tests were conducted between ordinary carbon fiber plates and a pre-stressed carbon fiber plate and between secondary loaded carbon fiber plates and a concrete beam strengthened with a secondary loaded carbon fiber plate. On this basis, we analyzed the failure pattern, the width of cracks and their distribution, the cracking load, the yield load, the limit load and the relation between load and deflec- tion. The results indicate that using pre-stressed carbon fiber plates to strengthen concrete beams is feasible and effective.
基金funded by the Research Council of Norway through NFR 191204/V30
文摘Honji instability and ringing of offshore structrures are two different phenomena. Honji instability occurs at a circular cylinder in transverse periodic finite motion in a water tank. It is superposed on the streaming flow induced by the cylinder’s boundary layer. Its oscillation period is half of the period of the cylinder oscillation. Finite volume calculations of the filtered Navier-Stokes equations visualize the three-dimensional instability, where fluid particles transported by the circumferencial roll pairs exhibit a periodic mushroom-like pattern. Force is the same with and without the Honji instability. The large eddy simulation calculations for high Reynolds number support a drag coefficient in accordance with the Stokes-Wang solution below separation and conform with experimental measurements of the damping force on a harmonically oscillating cylinder. Ringing of offshore structures are vibrations which appear at natural frequencies and concern fatigue. It is generated by a higher harmonic force oscillating with frequency being 3-4 times the fundamental wave frequency. Together with a strong inertia load in phase with the incoming wave’s acceleration, a secondary load cycle appears in strong seas when the wave crest leaves the structure; this occurs about 1/4 wave period after the main force peak, it starts when the wave crest is about one cylinder radius behind the cylinder, lasts for about 15-20 percent of the wave period and has a magnitude up to 11 % of the peak-to-peak total force. It is a gravity effect and appears in strong irregular seas when kA > 0.18 and um/√gD > 0.4 (k wavenumber, A amplitude, um maximal wave induced velocity, g acceleration of gravity, D cylinder diameter).