Flow accelerated corrosion(FAC) is the main failure cause of the secondary circuit carbon steel piping in nuclear power plants.The piping failures caused by FAC have resulted in numerous unplanned outages and tragic...Flow accelerated corrosion(FAC) is the main failure cause of the secondary circuit carbon steel piping in nuclear power plants.The piping failures caused by FAC have resulted in numerous unplanned outages and tragic fatalities.The existing researches focus on the main factors contributing to FAC,which include metallurgical factors,environmental factors and hydrodynamic factors. Some effective FAC management methods and programs with long term monitoring and inspection data analysis are recommended.But a comprehensive FAC management system should be developed in order to mitigate and manage FAC systematically.In this paper,the FAC influencing factors are analyzed in combination with the operating conditions of the secondary circuit piping in the Third Qinshan Nuclear Power Plant(TQNPP),China(Third Qinshan Nuclear Power Company Limited,China).A comprehensive FAC mitigation and management system is developed for TQNPP secondary circuit piping.The system is composed of five processes,viz.materials substitution,water chemical optimization,long-term monitor strategy for the susceptible piping,integrity evaluation of the local thinning defects,and repair or replacement.With the implementation of the five processes,the material of FAC sensitive pipe fittings are modified from carbon steel to stainless steel,N_2H_4 and NH_3 are finally selected as the water chemical regulator of secondary circuit,the secondary circuit pips are classified according to FAC susceptibility in order to conduct long term monitoring strategy,and an integrity evaluation flow for local thinning caused by FAC in carbon steel piping is developed.If the component with local thinning defects is not fit-for-service,corresponding repair or replacement should be conducted.The comprehensive FAC mitigation and management system with five interrelated processes would be a cost-effective method of increasing personnel safety,plant safety and availability.展开更多
The fuzzy logic and neural networks are combined in this paper, setting upthe fuzzy neural network (FNN ) ; meanwhile, the distinct differences and connections between thefuzzy logic and neural network are compared. F...The fuzzy logic and neural networks are combined in this paper, setting upthe fuzzy neural network (FNN ) ; meanwhile, the distinct differences and connections between thefuzzy logic and neural network are compared. Furthermore, the algorithm and structure of the FNN areintroduced. In order to diagnose the faults of nuclear power plant, the FNN is applied to thenuclear power planl, and the intelligence fault diagnostic system of the nuclear power plant isbuilt based on the FNN . The fault symptoms and the possibility of the inverted U-tube breakaccident of steam generator are discussed. In order to test the system' s validity, the invertedU-tube break accident of steam generator is used as an example and many simulation experiments areperformed. The test result shows that the FNN can identify the fault.展开更多
It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neu...It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neural Network (RBFNN) has the characteristics of optimal approximation and global approximation. The mixed coding of binary system and decimal system is introduced to the structure and parameters of RBFNN, which is trained in course of the genetic optimization. Finally, a fault diagnosis system according to the frequent faults in condensation and feed water system of nuclear power plant is set up. As a result, Genetic-RBF Neural Network (GRBFNN) makes the neural network smaller in size and higher in generalization ability. The diagnosis speed and accuracy are also improved.展开更多
The digital reactor protection system(RPS)is one of the most important digital instrumentation and control(I&C)systems utilized in nuclear power plants(NPPs).It ensures a safe reactor trip when the safety-related ...The digital reactor protection system(RPS)is one of the most important digital instrumentation and control(I&C)systems utilized in nuclear power plants(NPPs).It ensures a safe reactor trip when the safety-related parameters violate the operational limits and conditions of the reactor.Achieving high reliability and availability of digital RPS is essential to maintaining a high degree of reactor safety and cost savings.The main objective of this study is to develop a general methodology for improving the reliability of the RPS in NPP,based on a Bayesian Belief Network(BBN)model.The structure of BBN models is based on the incorporation of failure probability and downtime of the RPS I&C components.Various architectures with dual-state nodes for the I&C components were developed for reliability-sensitive analysis and availability optimization of the RPS and to demonstrate the effect of I&C components on the failure of the entire system.A reliability framework clarified as a reliability block diagram transformed into a BBN representation was constructed for each architecture to identify which one will fit the required reliability.The results showed that the highest availability obtained using the proposed method was 0.9999998.There are 120 experiments using two common component importance measures that are applied to define the impact of I&C modules,which revealed that some modules are more risky than others and have a larger effect on the failure of the digital RPS.展开更多
The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SP...The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SPNDs are indispensable for reliable reactor management.To completely extract the correlated state information of SPNDs,we constructed a twin model based on a generalized regression neural network(GRNN)that represents the common relationships among overall signals.Faulty SPNDs were determined because of the functional concordance of the twin model and real monitoring sys-tems,which calculated the error probability distribution between the model outputs and real values.Fault detection follows a tolerance phase to reinforce the stability of the twin model in the case of massive failures.A weighted K-nearest neighbor model was employed to reasonably reconstruct the values of the faulty signals and guarantee data purity.The experimental evaluation of the proposed method showed promising results,with excellent output consistency and high detection accuracy for both single-and multiple-point faulty SPNDs.For unexpected excessive failures,the proposed tolerance approach can efficiently repair fault behaviors and enhance the prediction performance of the twin model.展开更多
文摘Flow accelerated corrosion(FAC) is the main failure cause of the secondary circuit carbon steel piping in nuclear power plants.The piping failures caused by FAC have resulted in numerous unplanned outages and tragic fatalities.The existing researches focus on the main factors contributing to FAC,which include metallurgical factors,environmental factors and hydrodynamic factors. Some effective FAC management methods and programs with long term monitoring and inspection data analysis are recommended.But a comprehensive FAC management system should be developed in order to mitigate and manage FAC systematically.In this paper,the FAC influencing factors are analyzed in combination with the operating conditions of the secondary circuit piping in the Third Qinshan Nuclear Power Plant(TQNPP),China(Third Qinshan Nuclear Power Company Limited,China).A comprehensive FAC mitigation and management system is developed for TQNPP secondary circuit piping.The system is composed of five processes,viz.materials substitution,water chemical optimization,long-term monitor strategy for the susceptible piping,integrity evaluation of the local thinning defects,and repair or replacement.With the implementation of the five processes,the material of FAC sensitive pipe fittings are modified from carbon steel to stainless steel,N_2H_4 and NH_3 are finally selected as the water chemical regulator of secondary circuit,the secondary circuit pips are classified according to FAC susceptibility in order to conduct long term monitoring strategy,and an integrity evaluation flow for local thinning caused by FAC in carbon steel piping is developed.If the component with local thinning defects is not fit-for-service,corresponding repair or replacement should be conducted.The comprehensive FAC mitigation and management system with five interrelated processes would be a cost-effective method of increasing personnel safety,plant safety and availability.
文摘The fuzzy logic and neural networks are combined in this paper, setting upthe fuzzy neural network (FNN ) ; meanwhile, the distinct differences and connections between thefuzzy logic and neural network are compared. Furthermore, the algorithm and structure of the FNN areintroduced. In order to diagnose the faults of nuclear power plant, the FNN is applied to thenuclear power planl, and the intelligence fault diagnostic system of the nuclear power plant isbuilt based on the FNN . The fault symptoms and the possibility of the inverted U-tube breakaccident of steam generator are discussed. In order to test the system' s validity, the invertedU-tube break accident of steam generator is used as an example and many simulation experiments areperformed. The test result shows that the FNN can identify the fault.
文摘It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neural Network (RBFNN) has the characteristics of optimal approximation and global approximation. The mixed coding of binary system and decimal system is introduced to the structure and parameters of RBFNN, which is trained in course of the genetic optimization. Finally, a fault diagnosis system according to the frequent faults in condensation and feed water system of nuclear power plant is set up. As a result, Genetic-RBF Neural Network (GRBFNN) makes the neural network smaller in size and higher in generalization ability. The diagnosis speed and accuracy are also improved.
文摘The digital reactor protection system(RPS)is one of the most important digital instrumentation and control(I&C)systems utilized in nuclear power plants(NPPs).It ensures a safe reactor trip when the safety-related parameters violate the operational limits and conditions of the reactor.Achieving high reliability and availability of digital RPS is essential to maintaining a high degree of reactor safety and cost savings.The main objective of this study is to develop a general methodology for improving the reliability of the RPS in NPP,based on a Bayesian Belief Network(BBN)model.The structure of BBN models is based on the incorporation of failure probability and downtime of the RPS I&C components.Various architectures with dual-state nodes for the I&C components were developed for reliability-sensitive analysis and availability optimization of the RPS and to demonstrate the effect of I&C components on the failure of the entire system.A reliability framework clarified as a reliability block diagram transformed into a BBN representation was constructed for each architecture to identify which one will fit the required reliability.The results showed that the highest availability obtained using the proposed method was 0.9999998.There are 120 experiments using two common component importance measures that are applied to define the impact of I&C modules,which revealed that some modules are more risky than others and have a larger effect on the failure of the digital RPS.
基金supported by the Natural Science Foundation of Fujian Province,China(No.2022J01566).
文摘The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SPNDs are indispensable for reliable reactor management.To completely extract the correlated state information of SPNDs,we constructed a twin model based on a generalized regression neural network(GRNN)that represents the common relationships among overall signals.Faulty SPNDs were determined because of the functional concordance of the twin model and real monitoring sys-tems,which calculated the error probability distribution between the model outputs and real values.Fault detection follows a tolerance phase to reinforce the stability of the twin model in the case of massive failures.A weighted K-nearest neighbor model was employed to reasonably reconstruct the values of the faulty signals and guarantee data purity.The experimental evaluation of the proposed method showed promising results,with excellent output consistency and high detection accuracy for both single-and multiple-point faulty SPNDs.For unexpected excessive failures,the proposed tolerance approach can efficiently repair fault behaviors and enhance the prediction performance of the twin model.