Multipe NSSS (Nuclear Steam Supply System) modules use the common feeding-water system to drive the common turbine power generation set. The SSFFN (secondary side fluid flow network) of MHTGR plant has features i.e. s...Multipe NSSS (Nuclear Steam Supply System) modules use the common feeding-water system to drive the common turbine power generation set. The SSFFN (secondary side fluid flow network) of MHTGR plant has features i.e. strong-coupling and nonlinearity. A wide range of power switching operation will cause unsteady flow, which may destroy the working elements and will be a threat for normal operation. To overcome those problems, a differential-algebraic model and PI controllers are designed for the SSFFN. In MATLAB\SIMULINK environment, a simulation platform is established and used to make a simulation of SSFFN of a MHTGR plant with two NSSS modules, which uses feedwater valves to control the mass flow rate in each module instead of feedwater pump. Results reflect good robustness of controllers.展开更多
Since FCC's opening for white space(WS) utilization,database-assisted dynamic spectrum access(DSA) has become the de facto solution for the realization of dynamic spectrum sharing(DSS),due to its simplicity and co...Since FCC's opening for white space(WS) utilization,database-assisted dynamic spectrum access(DSA) has become the de facto solution for the realization of dynamic spectrum sharing(DSS),due to its simplicity and compatibility with commercial off-the-shelf(COTS) devices.It is envisioned that such technology will strongly support the prosperous wireless multimedia networking(WMN) applications with satisfying QoS guarantees in the future.However,how to counter the time-frequency variant property when exploiting the WS spectrum for the provision of these services to secondary users(SUs) still remains a great challenge.In such context,a dynamic secondary access scheme for database-assisted spectrum sharing networks is proposed in this paper.In the beginning,the spectrum requirements of SUs for diverse services are modeled by considering the minimum required service data-rate and spectrum access duration.Afterwards,the spectrum demand evaluation and bidding policy are formulated based on the service classes of SUs.Furthermore,a doublephase(DP) spectrum allocation scheme,which consists of the initial resource allocation phase and resource allocation adjustment phase,is carefully designed for DSA.Finally,extensive simulations are conducted and the results demonstrate that our scheme can increase the spectrum trading revenue and adapt to varying service requirements.展开更多
A new metal-organic framework(MOF) based on metal clusters as secondary building units(SBU),has been synthesized and structurally characterized.The reported MOF presents an interesting 8-connected self-penetrating...A new metal-organic framework(MOF) based on metal clusters as secondary building units(SBU),has been synthesized and structurally characterized.The reported MOF presents an interesting 8-connected self-penetrating coordination network based on dinuclear cadmium cluster with a 4^(24)·5·6~3 topology. Moreover,the thermal stability and luminescence property of this compound have been investigated.展开更多
文摘Multipe NSSS (Nuclear Steam Supply System) modules use the common feeding-water system to drive the common turbine power generation set. The SSFFN (secondary side fluid flow network) of MHTGR plant has features i.e. strong-coupling and nonlinearity. A wide range of power switching operation will cause unsteady flow, which may destroy the working elements and will be a threat for normal operation. To overcome those problems, a differential-algebraic model and PI controllers are designed for the SSFFN. In MATLAB\SIMULINK environment, a simulation platform is established and used to make a simulation of SSFFN of a MHTGR plant with two NSSS modules, which uses feedwater valves to control the mass flow rate in each module instead of feedwater pump. Results reflect good robustness of controllers.
基金supported in part by Major State Basic Research Development Program of China(973 Program)(No.2009CB320403)National Natural Science Foundation of China(61420106008,61221001, 61201222,61100213)+5 种基金the 111 Project (B07022)China Scholarship CouncilShanghai Key Laboratory of Digital Media Processing and Transmissionsthe funds of MIIT of China(Grant No.2011ZX03001-007-03)Research Grant SRG030-FST13-HF from the University of Macaothe NSERC,Canada
文摘Since FCC's opening for white space(WS) utilization,database-assisted dynamic spectrum access(DSA) has become the de facto solution for the realization of dynamic spectrum sharing(DSS),due to its simplicity and compatibility with commercial off-the-shelf(COTS) devices.It is envisioned that such technology will strongly support the prosperous wireless multimedia networking(WMN) applications with satisfying QoS guarantees in the future.However,how to counter the time-frequency variant property when exploiting the WS spectrum for the provision of these services to secondary users(SUs) still remains a great challenge.In such context,a dynamic secondary access scheme for database-assisted spectrum sharing networks is proposed in this paper.In the beginning,the spectrum requirements of SUs for diverse services are modeled by considering the minimum required service data-rate and spectrum access duration.Afterwards,the spectrum demand evaluation and bidding policy are formulated based on the service classes of SUs.Furthermore,a doublephase(DP) spectrum allocation scheme,which consists of the initial resource allocation phase and resource allocation adjustment phase,is carefully designed for DSA.Finally,extensive simulations are conducted and the results demonstrate that our scheme can increase the spectrum trading revenue and adapt to varying service requirements.
基金supported by the National Science Foundation of China(No.51073079)the Natural Science Fund of Tianjin,China (No.10JCZDJC22100)the Fundamental Research Funds for the Central Universities
文摘A new metal-organic framework(MOF) based on metal clusters as secondary building units(SBU),has been synthesized and structurally characterized.The reported MOF presents an interesting 8-connected self-penetrating coordination network based on dinuclear cadmium cluster with a 4^(24)·5·6~3 topology. Moreover,the thermal stability and luminescence property of this compound have been investigated.