Quantifying differences in secondary organic aerosols(SOAs)between the preindustrial period and the present day is crucial to assess climate forcing and environmental effects resulting from anthropogenic activities.Th...Quantifying differences in secondary organic aerosols(SOAs)between the preindustrial period and the present day is crucial to assess climate forcing and environmental effects resulting from anthropogenic activities.The lack of vegetation information for the preindustrial period and the uncertainties in describing SOA formation are two leading factors preventing simulation of SOA.This study calculated the online emissions of biogenic volatile organic compounds(VOCs)in the Aerosol and Atmospheric Chemistry Model of the Institute of Atmospheric Physics(IAP-AACM)by coupling the Model of Emissions of Gases and Aerosols from Nature(MEGAN),where the input vegetation parameters were simulated by the IAP Dynamic Global Vegetation Model(IAP-DGVM).The volatility basis set(VBS)approach was adopted to simulate SOA formation from the nontraditional pathways,i.e.,the oxidation of intermediate VOCs and aging of primary organic aerosol.Although biogenic SOAs(BSOAs)were dominant in SOAs globally in the preindustrial period,the contribution of nontraditional anthropogenic SOAs(ASOAs)to the total SOAs was up to 35.7%.In the present day,the contribution of ASOAs was 2.8 times larger than that in the preindustrial period.The contribution of nontraditional sources of SOAs to SOA was as high as 53.1%.The influence of increased anthropogenic emissions in the present day on BSOA concentrations was greater than that of increased biogenic emission changes.The response of BSOA concentrations to anthropogenic emission changes in the present day was more sensitive than that in the preindustrial period.The nontraditional sources and the atmospheric oxidation capability greatly affect the global SOA change.展开更多
In order to investigate the atmospheric oxidation processes and the formation of secondary organic aerosol (SOA), an indoor environmental reaction smog chamber are constructed and characterized. The system consists ...In order to investigate the atmospheric oxidation processes and the formation of secondary organic aerosol (SOA), an indoor environmental reaction smog chamber are constructed and characterized. The system consists of the collapsible ~830 L FEP Teflon film main reactor, in which the atmospheric chemical reactions take place and the formation of SOA occurs under the simulated atmospheric conditions, and the diverse on-line gas- and particle-phase instrumentation, such as the proton transfer reaction mass spectrometer, the synchrotron radiation photoionization mass spectrometer, the aerosol laser time-of-flight mass spectrometer, and other traditional commercial instruments. The initial characterization experiments are described, concerning the temperature and ultraviolet light intensity, the reactivity of the pure air, the wall loss rates of gaseous compounds and particulate matter. And the initial evaluation experiments for SOA yields from the ozonolysis of α-pinene and for mass spectra of the products resulting from the photooxidation of OH initiated isoprene are also presented, which indicate the applicability of this facility on the studies of gas-phase chemical mechanisms as well as the formation of SOA expected in the atmosphere.展开更多
In a smog chamber, the photooxidation of toluene was initiated by hydroxyl radical (OH.) under different experimental conditions. The size distribution of secondary organic aerosol(SOA) particles from the above re...In a smog chamber, the photooxidation of toluene was initiated by hydroxyl radical (OH.) under different experimental conditions. The size distribution of secondary organic aerosol(SOA) particles from the above reaction was measured using aerodynamic particle sizer spectrometer. It was found from our experimental results that the number of SOA particles increased with increasing the concentration of toluene. As the reaction time prolonged, the sum of SOA particles was also increased. After a reaction time of 130 min, the concentration of secondary organic aerosol particles would be kept constant at 2300 particles/cm^3. Increasing illumination power of blacklamps could significantly induce a higher concentration of secondary organic aerosol particle. The density of SOA particles would also be increased with increasing concentration of CH30NO, however, it would be decreased as soon as the concentration of CH30NO was larger than 225.2 ppm. Nitrogen oxide with initial concentration higher than 30. 1 ppm was also found to have little effect on the formation of secondary organic aerosol.展开更多
Hydroxyl radical (.OH)-initiated photooxidation reaction of toluene was carried out in a self-made smog chamber. Four individual seed aerosols such as ammonium sulfate, ammonium nitrate, sodium silicate and calcium ...Hydroxyl radical (.OH)-initiated photooxidation reaction of toluene was carried out in a self-made smog chamber. Four individual seed aerosols such as ammonium sulfate, ammonium nitrate, sodium silicate and calcium chloride, were introduced into the chamber to assess their influence on the growth of secondary organic aerosols (SOA). It was found that the low concentration of seed aerosols might lead to high concentration of SOA particles. Seed aerosols would promote rates of SOA formation at the start of the reaction and inhibit its formation rate with prolonging the reaction time. In the case of ca. 9000 pt/cm^3 seed aerosol load, the addition of sodium silicate induced a same effect on the SOA formation as ammonium nitrate. The influence of the four individual seed aerosols on the generation of SOA decreased in the order of calcium chloride〉sodium silicate and ammonium nitrate〉ammonium sulfate.展开更多
Secondary organic aerosol (SOA) formation from hydroxyl radical (OH.) initiated photooxidation of α-pinene was investigated in a home-made smog chamber. The size distribution of SOA particles was measured using a...Secondary organic aerosol (SOA) formation from hydroxyl radical (OH.) initiated photooxidation of α-pinene was investigated in a home-made smog chamber. The size distribution of SOA particles was measured using aerodynamic particle sizer spectrometer. The effects of illumination intensity and light application time on SOA formation for α-pinene were evaluated. Experimental results show that the concentration of SOA particles increased significantly with an increasing of illumination intensity, and the light application time, the concentration, and the size of SOA particles were also increased. In addition, the factors influencing the formation of SOA were discussed. In addition, this article compared the effect of α-pinene with that of toluene, and discussed the contribution of α-pinene to SOA formation.展开更多
Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthro...Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthropogenicpollutants(NO_(x),anthropogenic aerosols,SO_(2),NH_(3))on biogenic SOA formation.NO_(x) participate in BVOC oxidationthrough changing the radical chemistry and oxidation capacity,leading to a complex SOA composition and yield sensitivitytowards NO_(x) level for different or even specific hydrocarbon precursors.Anthropogenic aerosols act as an importantintermedium for gas-particle partitioning and particle-phase reactions,processes of which are influenced by the particlephase state,acidity,water content and thus associated with biogenic SOA mass accumulation.SO_(2)modifies biogenic SOAformation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzedheterogeneous reactions.Some new SO_(2)-involved mechanisms for organosulfate formation have also been proposed.NH_(3)/amines,as the most prevalent base species in the atmosphere,influence biogenic SOA composition and modify theoptical properties of SOA.The response of SOA formation behavior to these anthropogenic pollutants varies amongdifferent BVOCs precursors.Investigations on anthropogenic-biogenic interactions in some areas of China that aresimultaneously influenced by anthropogenic and biogenic emissions are summarized.Based on this review,somerecommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution tothe total SOA budget.This study also highlights the importance of controlling anthropogenic pollutant emissions witheffective pollutant mitigation policies to reduce regional and global biogenic SOA formation.展开更多
Photooxidation of isoprene leads to the formation of secondary organic aerosol (SOA). In this study, the chemical composition of SOA formed from OH-initiated photooxidation of isoprene has been investigated with gas...Photooxidation of isoprene leads to the formation of secondary organic aerosol (SOA). In this study, the chemical composition of SOA formed from OH-initiated photooxidation of isoprene has been investigated with gas chromatography/mass spectrometry (GC/MS) and a home-made aerosol time-of-fiight mass spectrometer. Sampling particles generated in a home-made smog chamber. The size distribution of SOA particles was detected by a TSI 3321 aerodynamic particle size spectrometer in real time. Results showed that SOA created by isoprene photooxidation was predominantly in the form of fine particles, which have diameters less than 2.5 μm. The obtained mass spectra of individual particles show that products of the OH-initiated oxidation of isoprene contain methyl vinyl ketone, methacrolein, formaldehyde, and some other hydroxycarbonyls. The possible reaction mechanisms leading to these products were also discussed.展开更多
An indoor chamber facility is described for investigation of atmospheric aerosol chemistry. Two sets of α-pinene ozonolysis experiments were conducted in the presence of dry ammonium sulfate seed particle: ozone limi...An indoor chamber facility is described for investigation of atmospheric aerosol chemistry. Two sets of α-pinene ozonolysis experiments were conducted in the presence of dry ammonium sulfate seed particle: ozone limited experiments and α-pinene limited experiments. The concentration of gas phase and particle phase species was monitored continuously by on-line instruments and recorded automatically by data sampling system. The evolution of size distribution was measured by a scanning mobility particle sizer ...展开更多
Exploring secondary organic aerosol(SOA)processes is crucial for understanding climate and air pollution in megacities.This study introduces a new method using positive matrix factorization(PMF)to investigate the SOA ...Exploring secondary organic aerosol(SOA)processes is crucial for understanding climate and air pollution in megacities.This study introduces a new method using positive matrix factorization(PMF)to investigate the SOA process by integrating the OA and associated ions previously misidentified as inorganic aerosol in high-resolution aerosol mass spectrometry data.The mass spectra and time series of primary OA(POA)and less oxidized oxygenated OA(OOA)identified by this new method resembled those resolved by traditional PMF.However,more oxidized OOA(MO-OOA)identified by traditional PMF can be further subdivided into multiple OA factors,including nitrogen-enriched OA(ON-OA)and sulfur-enriched OA(OS-OA)in summer,and ON-OA,OS-OA,and OOA in winter.Our findings highlight the significant role of photochemical processes in the formation of OS-OA compared to ON-OA.The compositions of reconstructed MO-OOA varied under different Ox(=O_(3)+NO_(2))and relative humidity conditions,emphasizing the limitations of using a constant mass spectrum.Aged biomass burning OA(BBOA)and coal combustion OA(CCOA),previously misattributed as POA,contributed 9.2%(0.43μg m^(−3))and 7.0%(0.33μg m^(−3))to SOA,respectively.Aged BBOA was more prone to forming OS-OA,whereas ON-OA showed higher correlations with aged CCOA,indicating distinct molecular compositions of SOA from different aged POA sources.Compared to aged BBOA,aged CCOA was more subject to conversion during aqueous phase processing.These results suggest that the variations in mass spectra and compositions need to be considered when simulating SOA processes.展开更多
Enhanced mass concentrations of aromatic-derived secondary organic aerosol(SOA)are frequently observed during humid-haze events.However,the influencing mechanism of relative humidity(RH)in aromatic-derived SOA formati...Enhanced mass concentrations of aromatic-derived secondary organic aerosol(SOA)are frequently observed during humid-haze events.However,the influencing mechanism of relative humidity(RH)in aromatic-derived SOA formation remains incompletely understood.Here,the RH dependence of SOA formation in the presence of NOx was explored by a series of chamber experiments for toluene(TOL)and 1,3,5-trimethylbenzene(TMB)photooxidation.The yield of TOL SOA and TMB SOA increased by 221%and 52%with increasing RH from~8%to~70%,respectively.Analytical results from a high-resolution mass spectrometer showed that SOA constituents with high oxygen content(O/C>0.6)were more abundant in SOA formed in the~70%RH experiment.The elevated yields and O/C of SOA could be attributed to the promoted formation and particle-phase diffusivity of highly oxidized molecules.In addition,in comparison with TMB,TOL could produce more unsaturated aldehydes,which are oxidized into carboxylic acids with high O/C,leading to a more sensitive response of TOL SOA formation to the change in RH.Our work provides mechanistic insights into RH roles in aromatic SOA formation and is helpful for a better understanding of humid-haze events.展开更多
The compositions and distributions of monoterpenes,isoprene,aromatics and sesquiterpene SOA tracers(SOAM,SOAI,SOAA and SOAS,respectively)at an island site(Da Wan Shan Island,DWS)were investigated in the context of the...The compositions and distributions of monoterpenes,isoprene,aromatics and sesquiterpene SOA tracers(SOAM,SOAI,SOAA and SOAS,respectively)at an island site(Da Wan Shan Island,DWS)were investigated in the context of the influence of continental and marine air masses over the Pearl River Estuary(PRE)region in winter 2021.The sum concentration of SOA tracers was 6.2–132.8 ng m^(−3),with SOAM and SOAI as the main components in both continental(scenarios A1 and A2)and marine air masses(scenario A3),as well as their combination(scenario A4).The highest and lowest levels of SOAM were observed in A1 and A3,respectively,which were mainly related to the variations in meteorological conditions,precursor concentrations,and the degree of photochemical processes.Higher MBTCA/HGA(3-methyl-1,2,3-butanetricarboxylic acid/3-hydroxyglutaric acid)ratios suggested a less significant contribution fromα-pinene to SOAM.The variations of SOAI in the different scenarios were associated with differences in relative humidity,particle acidity,and isoprene/NOx ratios.The respective highest and lowest concentrations of aromatics SOA tracers in A1 and A3 revealed the influence of anthropogenic precursors from upwind continental areas,which was confirmed by the correlation among biogenic and anthropogenic precursors.The results of the tracer-based-method suggested dominant contributions of SOAs from aromatics and monoterpenes,with the highest concentrations in A1.A WRF-Chem simulation revealed that the SOAs from the above precursors only contributed 12%–25%to the total SOA at DWS,while the spatial distributions of SOAs further highlighted that the abundance of SOAs over the PRE region in winter is highly associated with air masses transported from upwind continental areas.展开更多
As Volatile Organic Compounds(VOCs)are one of the precursors of ozone,their distribution and variable concentrations are highly related to local ozone pollution control.In this study,we obtained vertical profiles of V...As Volatile Organic Compounds(VOCs)are one of the precursors of ozone,their distribution and variable concentrations are highly related to local ozone pollution control.In this study,we obtained vertical profiles of VOCs in Shanghai’s Jinshan district on 8 September and 9 September in 2016 to investigate their distribution and impact on local atmospheric oxidation in the near surface layer.Vertical samples were collected from heights between 50 m and 400 m by summa canisters using an unmanned aerial vehicle(UAV).Concentrations of VOCs(VOCs refers to the 52 species measured in this study)varied minimally below 200 m,and decreased by 21.2%from 100 m to 400 m.The concentrations of VOCs above 200 m decreased significantly in comparison to those below 200 m.The proportions of alkanes and aromatics increased from 55.2%and 30.5%to 57.3%and 33.0%,respectively.Additionally,the proportion of alkenes decreased from 13.2%to 8.4%.Toluene and m/p-xylene were the key species in the formation of SOA and ozone.Principal component analysis(PCA)revealed that the VOCs measured in this study mainly originated from industrial emissions.展开更多
Elucidating the effects of anthropogenic pollutants on the photooxidation of biogenic volatile organic compounds is crucial to understanding the fundamental mechanisms of secondary organic aerosol(SOA)formation.Here,t...Elucidating the effects of anthropogenic pollutants on the photooxidation of biogenic volatile organic compounds is crucial to understanding the fundamental mechanisms of secondary organic aerosol(SOA)formation.Here,the impacts of NO_(2)and SO_(2)on SOA formation from the photooxidation of a representative monoterpene,β-pinene,were investigated by a number of laboratory studies.The results indicated NO_(2)enhanced the SOA mass concentrations and particle number concentrations under both low and highβ-pinene conditions.This could be rationalized that the increased O_(3)concentrations upon the NO_(x)photolysis was helpful for the generation of more amounts of O_(3)-oxidized products,which accelerated the SOA nucleation and growth.Combing with NO_(2),the promotion of the SOA yield by SO_(2)was mainly reflected in the increase of mass concentration,which might be due to the elimination of the newly formed particles by the initially formed particles.The observed low oxidation degree of SOA might be attributed to the fast growth of SOA,resulting in the uptake of less oxygenated gas-phase species onto the particle phase.The present findings have important implications for SOA formation affected by anthropogenic–biogenic interactions in the ambient atmosphere.展开更多
Unsaturated ketones are typical oxygenated volatile organic compounds(OVOCs)with high reactivity,and are important precursors in air pollution.The sources of OVOCs are complex and include direct emissions and secondar...Unsaturated ketones are typical oxygenated volatile organic compounds(OVOCs)with high reactivity,and are important precursors in air pollution.The sources of OVOCs are complex and include direct emissions and secondary oxidation formation of VOCs in the atmosphere.2-Cyclohexen-1-one is a widespread substance,and is derived from the industrial catalytic oxidation of cyclohexene.In this paper,we investigated the rate constants of the chemical reactions of 2-cyclohexen-1-one with NO_(3) radicals,which is(7.25±0.29)×10^(-15) cm^(3)·molecule^(-1)·s^(-1) at 298 K and under 1 atm(1 atm=101325Pa).It supplemented the kinetics of NO_(3) radicals database,and revealed its effects in the nighttime atmosphere.In addition,the reaction products of 2-cyclohexen-1-one with NO_(3) radicals were detected by Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS),which revealed a series of nitrate esters in the composition of the secondary organic aerosol(SOA),which may reduce atmospheric visibility.Finally,the possible pathways for the generation of the products were developed.展开更多
Volatile organic compounds (VOCs) are major precursors for ozone and secondary organic aerosol (SOA), both of which greatly harm human health and significantly affect the Earth's climate. We simultaneously estima...Volatile organic compounds (VOCs) are major precursors for ozone and secondary organic aerosol (SOA), both of which greatly harm human health and significantly affect the Earth's climate. We simultaneously estimated ozone and SOA formation from anthropogenic VOCs emissions in China by employing photochemical ozone creation potential (POCP) values and SOA yields. We gave special attention to large molecular species and adopted the SOA yield curves from latest smog chamber experiments. The estimation shows that alkylbenzenes are greatest contributors to both ozone and SOA formation (36.0% and 51.6%, respectively), while toluene and xylenes are largest contributing individual VOCs. Industry solvent use, industry process and domestic combustion are three sectors with the largest contributions to both ozone (24.7%, 23.0% and 17.8%, respectively) and SOA (22.9%, 34.6% and 19.6%, respectively) formation. In terms of the formation potential per unit VOCs emission, ozone is sensitive to open biomass burning, transportation, and domestic solvent use, and SOA is sensitive to industry process, domestic solvent use, and domestic combustion. Biomass stoves, paint application in industrial protection and buildings, adhesives application are key individual sources to ozone and SOA formation, whether measured by total contribution or contribution per unit VOCs emission. The results imply that current VOCs control policies should be extended to cover most important industrial sources, and the control measures for biomass stoves should be tightened. Finally, discrepant VOCs control policies should be implemented in different regions based on their ozone/aerosol concentration levels and dominant emission sources for ozone and SOA formation potential.展开更多
基金supported by the National Key R&D Program of China(Grant No.2020YFA0607801)the National Natural Science Foundation of China(Grant Nos.42007199 and 42377105)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”.
文摘Quantifying differences in secondary organic aerosols(SOAs)between the preindustrial period and the present day is crucial to assess climate forcing and environmental effects resulting from anthropogenic activities.The lack of vegetation information for the preindustrial period and the uncertainties in describing SOA formation are two leading factors preventing simulation of SOA.This study calculated the online emissions of biogenic volatile organic compounds(VOCs)in the Aerosol and Atmospheric Chemistry Model of the Institute of Atmospheric Physics(IAP-AACM)by coupling the Model of Emissions of Gases and Aerosols from Nature(MEGAN),where the input vegetation parameters were simulated by the IAP Dynamic Global Vegetation Model(IAP-DGVM).The volatility basis set(VBS)approach was adopted to simulate SOA formation from the nontraditional pathways,i.e.,the oxidation of intermediate VOCs and aging of primary organic aerosol.Although biogenic SOAs(BSOAs)were dominant in SOAs globally in the preindustrial period,the contribution of nontraditional anthropogenic SOAs(ASOAs)to the total SOAs was up to 35.7%.In the present day,the contribution of ASOAs was 2.8 times larger than that in the preindustrial period.The contribution of nontraditional sources of SOAs to SOA was as high as 53.1%.The influence of increased anthropogenic emissions in the present day on BSOA concentrations was greater than that of increased biogenic emission changes.The response of BSOA concentrations to anthropogenic emission changes in the present day was more sensitive than that in the preindustrial period.The nontraditional sources and the atmospheric oxidation capability greatly affect the global SOA change.
基金This work was supported by the Natural Science Foundation of Anhui Province, China (No.1208085MD59), the National Natural Science Foundation of China (No.U1232209, No.41175121, and No.21307137), the Presidential Foundation of Hefei Institutes of Physical Science, Chinese Academy of Sciences, China (No.YZJJ201302), and the Knowledge Innovation Foundation of the Chinese Academy of Sciences (No.KJCX2-YW-N24).
文摘In order to investigate the atmospheric oxidation processes and the formation of secondary organic aerosol (SOA), an indoor environmental reaction smog chamber are constructed and characterized. The system consists of the collapsible ~830 L FEP Teflon film main reactor, in which the atmospheric chemical reactions take place and the formation of SOA occurs under the simulated atmospheric conditions, and the diverse on-line gas- and particle-phase instrumentation, such as the proton transfer reaction mass spectrometer, the synchrotron radiation photoionization mass spectrometer, the aerosol laser time-of-flight mass spectrometer, and other traditional commercial instruments. The initial characterization experiments are described, concerning the temperature and ultraviolet light intensity, the reactivity of the pure air, the wall loss rates of gaseous compounds and particulate matter. And the initial evaluation experiments for SOA yields from the ozonolysis of α-pinene and for mass spectra of the products resulting from the photooxidation of OH initiated isoprene are also presented, which indicate the applicability of this facility on the studies of gas-phase chemical mechanisms as well as the formation of SOA expected in the atmosphere.
文摘In a smog chamber, the photooxidation of toluene was initiated by hydroxyl radical (OH.) under different experimental conditions. The size distribution of secondary organic aerosol(SOA) particles from the above reaction was measured using aerodynamic particle sizer spectrometer. It was found from our experimental results that the number of SOA particles increased with increasing the concentration of toluene. As the reaction time prolonged, the sum of SOA particles was also increased. After a reaction time of 130 min, the concentration of secondary organic aerosol particles would be kept constant at 2300 particles/cm^3. Increasing illumination power of blacklamps could significantly induce a higher concentration of secondary organic aerosol particle. The density of SOA particles would also be increased with increasing concentration of CH30NO, however, it would be decreased as soon as the concentration of CH30NO was larger than 225.2 ppm. Nitrogen oxide with initial concentration higher than 30. 1 ppm was also found to have little effect on the formation of secondary organic aerosol.
基金Project supported by the National Natural Science Foundation of China(No.20477043)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-SW-H08).*
文摘Hydroxyl radical (.OH)-initiated photooxidation reaction of toluene was carried out in a self-made smog chamber. Four individual seed aerosols such as ammonium sulfate, ammonium nitrate, sodium silicate and calcium chloride, were introduced into the chamber to assess their influence on the growth of secondary organic aerosols (SOA). It was found that the low concentration of seed aerosols might lead to high concentration of SOA particles. Seed aerosols would promote rates of SOA formation at the start of the reaction and inhibit its formation rate with prolonging the reaction time. In the case of ca. 9000 pt/cm^3 seed aerosol load, the addition of sodium silicate induced a same effect on the SOA formation as ammonium nitrate. The influence of the four individual seed aerosols on the generation of SOA decreased in the order of calcium chloride〉sodium silicate and ammonium nitrate〉ammonium sulfate.
基金supported by the Knowledge Innovation Foundation of Chinese Academy of Sciences (No.KJCX2-YW-N24)
文摘Secondary organic aerosol (SOA) formation from hydroxyl radical (OH.) initiated photooxidation of α-pinene was investigated in a home-made smog chamber. The size distribution of SOA particles was measured using aerodynamic particle sizer spectrometer. The effects of illumination intensity and light application time on SOA formation for α-pinene were evaluated. Experimental results show that the concentration of SOA particles increased significantly with an increasing of illumination intensity, and the light application time, the concentration, and the size of SOA particles were also increased. In addition, the factors influencing the formation of SOA were discussed. In addition, this article compared the effect of α-pinene with that of toluene, and discussed the contribution of α-pinene to SOA formation.
基金This work was supported by National Natural Science Foundation of China(Grant No.91644214)Youth Innovation Program of Universities in Shandong Province(Grant No.2019KJD007)Fundamental Research Fund of Shandong University(Grant No.2020QNQT012).
文摘Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthropogenicpollutants(NO_(x),anthropogenic aerosols,SO_(2),NH_(3))on biogenic SOA formation.NO_(x) participate in BVOC oxidationthrough changing the radical chemistry and oxidation capacity,leading to a complex SOA composition and yield sensitivitytowards NO_(x) level for different or even specific hydrocarbon precursors.Anthropogenic aerosols act as an importantintermedium for gas-particle partitioning and particle-phase reactions,processes of which are influenced by the particlephase state,acidity,water content and thus associated with biogenic SOA mass accumulation.SO_(2)modifies biogenic SOAformation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzedheterogeneous reactions.Some new SO_(2)-involved mechanisms for organosulfate formation have also been proposed.NH_(3)/amines,as the most prevalent base species in the atmosphere,influence biogenic SOA composition and modify theoptical properties of SOA.The response of SOA formation behavior to these anthropogenic pollutants varies amongdifferent BVOCs precursors.Investigations on anthropogenic-biogenic interactions in some areas of China that aresimultaneously influenced by anthropogenic and biogenic emissions are summarized.Based on this review,somerecommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution tothe total SOA budget.This study also highlights the importance of controlling anthropogenic pollutant emissions witheffective pollutant mitigation policies to reduce regional and global biogenic SOA formation.
基金supported by the Knowledge Innovation Foundation of Chinese Academy of Sciences (No. KJCX2-YW-N24)
文摘Photooxidation of isoprene leads to the formation of secondary organic aerosol (SOA). In this study, the chemical composition of SOA formed from OH-initiated photooxidation of isoprene has been investigated with gas chromatography/mass spectrometry (GC/MS) and a home-made aerosol time-of-fiight mass spectrometer. Sampling particles generated in a home-made smog chamber. The size distribution of SOA particles was detected by a TSI 3321 aerodynamic particle size spectrometer in real time. Results showed that SOA created by isoprene photooxidation was predominantly in the form of fine particles, which have diameters less than 2.5 μm. The obtained mass spectra of individual particles show that products of the OH-initiated oxidation of isoprene contain methyl vinyl ketone, methacrolein, formaldehyde, and some other hydroxycarbonyls. The possible reaction mechanisms leading to these products were also discussed.
基金the National Natural ScienceFundation of China (No. 20637001)
文摘An indoor chamber facility is described for investigation of atmospheric aerosol chemistry. Two sets of α-pinene ozonolysis experiments were conducted in the presence of dry ammonium sulfate seed particle: ozone limited experiments and α-pinene limited experiments. The concentration of gas phase and particle phase species was monitored continuously by on-line instruments and recorded automatically by data sampling system. The evolution of size distribution was measured by a scanning mobility particle sizer ...
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0760200)the National Natural Science Foundation of China(Grant No.42377101,91744207).
文摘Exploring secondary organic aerosol(SOA)processes is crucial for understanding climate and air pollution in megacities.This study introduces a new method using positive matrix factorization(PMF)to investigate the SOA process by integrating the OA and associated ions previously misidentified as inorganic aerosol in high-resolution aerosol mass spectrometry data.The mass spectra and time series of primary OA(POA)and less oxidized oxygenated OA(OOA)identified by this new method resembled those resolved by traditional PMF.However,more oxidized OOA(MO-OOA)identified by traditional PMF can be further subdivided into multiple OA factors,including nitrogen-enriched OA(ON-OA)and sulfur-enriched OA(OS-OA)in summer,and ON-OA,OS-OA,and OOA in winter.Our findings highlight the significant role of photochemical processes in the formation of OS-OA compared to ON-OA.The compositions of reconstructed MO-OOA varied under different Ox(=O_(3)+NO_(2))and relative humidity conditions,emphasizing the limitations of using a constant mass spectrum.Aged biomass burning OA(BBOA)and coal combustion OA(CCOA),previously misattributed as POA,contributed 9.2%(0.43μg m^(−3))and 7.0%(0.33μg m^(−3))to SOA,respectively.Aged BBOA was more prone to forming OS-OA,whereas ON-OA showed higher correlations with aged CCOA,indicating distinct molecular compositions of SOA from different aged POA sources.Compared to aged BBOA,aged CCOA was more subject to conversion during aqueous phase processing.These results suggest that the variations in mass spectra and compositions need to be considered when simulating SOA processes.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC3706203)the National Natural Science Foundation of China(Grant Nos.91644214,22361162668,and 22406109)the China Postdoctoral Science Foundation(Grant No.2024M751797),and Shandong Postdoctoral Science Foundation(SDCX-ZG-202400178).
文摘Enhanced mass concentrations of aromatic-derived secondary organic aerosol(SOA)are frequently observed during humid-haze events.However,the influencing mechanism of relative humidity(RH)in aromatic-derived SOA formation remains incompletely understood.Here,the RH dependence of SOA formation in the presence of NOx was explored by a series of chamber experiments for toluene(TOL)and 1,3,5-trimethylbenzene(TMB)photooxidation.The yield of TOL SOA and TMB SOA increased by 221%and 52%with increasing RH from~8%to~70%,respectively.Analytical results from a high-resolution mass spectrometer showed that SOA constituents with high oxygen content(O/C>0.6)were more abundant in SOA formed in the~70%RH experiment.The elevated yields and O/C of SOA could be attributed to the promoted formation and particle-phase diffusivity of highly oxidized molecules.In addition,in comparison with TMB,TOL could produce more unsaturated aldehydes,which are oxidized into carboxylic acids with high O/C,leading to a more sensitive response of TOL SOA formation to the change in RH.Our work provides mechanistic insights into RH roles in aromatic SOA formation and is helpful for a better understanding of humid-haze events.
基金supported by the State Key Program of the National Natural Science Foundation of China(Grant Nos.42230701,91644215)the National Natural ScienceFoundation of China(Grant Nos.42122062 and 42307137)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515010852)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.23hytd002)the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2023SP218)L.M.acknowledges the Zhuhai Science and Technology Plan Project(Grant No.ZH22036201210115PWC).
文摘The compositions and distributions of monoterpenes,isoprene,aromatics and sesquiterpene SOA tracers(SOAM,SOAI,SOAA and SOAS,respectively)at an island site(Da Wan Shan Island,DWS)were investigated in the context of the influence of continental and marine air masses over the Pearl River Estuary(PRE)region in winter 2021.The sum concentration of SOA tracers was 6.2–132.8 ng m^(−3),with SOAM and SOAI as the main components in both continental(scenarios A1 and A2)and marine air masses(scenario A3),as well as their combination(scenario A4).The highest and lowest levels of SOAM were observed in A1 and A3,respectively,which were mainly related to the variations in meteorological conditions,precursor concentrations,and the degree of photochemical processes.Higher MBTCA/HGA(3-methyl-1,2,3-butanetricarboxylic acid/3-hydroxyglutaric acid)ratios suggested a less significant contribution fromα-pinene to SOAM.The variations of SOAI in the different scenarios were associated with differences in relative humidity,particle acidity,and isoprene/NOx ratios.The respective highest and lowest concentrations of aromatics SOA tracers in A1 and A3 revealed the influence of anthropogenic precursors from upwind continental areas,which was confirmed by the correlation among biogenic and anthropogenic precursors.The results of the tracer-based-method suggested dominant contributions of SOAs from aromatics and monoterpenes,with the highest concentrations in A1.A WRF-Chem simulation revealed that the SOAs from the above precursors only contributed 12%–25%to the total SOA at DWS,while the spatial distributions of SOAs further highlighted that the abundance of SOAs over the PRE region in winter is highly associated with air masses transported from upwind continental areas.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.41830106,21607104)the National Key Research and Development Plan(Grant Nos.2017YFC0210004,2018YFC0213801)+1 种基金the Shanghai Science and Technology Commission of Shanghai Municipality(18QA 403600)the Shanghai Environmental Protection Bureau(2017-2).
文摘As Volatile Organic Compounds(VOCs)are one of the precursors of ozone,their distribution and variable concentrations are highly related to local ozone pollution control.In this study,we obtained vertical profiles of VOCs in Shanghai’s Jinshan district on 8 September and 9 September in 2016 to investigate their distribution and impact on local atmospheric oxidation in the near surface layer.Vertical samples were collected from heights between 50 m and 400 m by summa canisters using an unmanned aerial vehicle(UAV).Concentrations of VOCs(VOCs refers to the 52 species measured in this study)varied minimally below 200 m,and decreased by 21.2%from 100 m to 400 m.The concentrations of VOCs above 200 m decreased significantly in comparison to those below 200 m.The proportions of alkanes and aromatics increased from 55.2%and 30.5%to 57.3%and 33.0%,respectively.Additionally,the proportion of alkenes decreased from 13.2%to 8.4%.Toluene and m/p-xylene were the key species in the formation of SOA and ozone.Principal component analysis(PCA)revealed that the VOCs measured in this study mainly originated from industrial emissions.
基金National Natural Science Foundation of China (Nos.22125303,92061203,and 22288201)the National Key Research and Development Program of China (No.2021YFA1400501)+3 种基金Innovation Program for Quantum Science and Technology (No.2021ZD0303304)Dalian Institute of Chemical Physics (No.DICP DCLS201702)Chinese Academy of Sciences (No.GJJSTD20220001)K.C.Wong Education Foundation (No.GJTD-2018-06)。
文摘Elucidating the effects of anthropogenic pollutants on the photooxidation of biogenic volatile organic compounds is crucial to understanding the fundamental mechanisms of secondary organic aerosol(SOA)formation.Here,the impacts of NO_(2)and SO_(2)on SOA formation from the photooxidation of a representative monoterpene,β-pinene,were investigated by a number of laboratory studies.The results indicated NO_(2)enhanced the SOA mass concentrations and particle number concentrations under both low and highβ-pinene conditions.This could be rationalized that the increased O_(3)concentrations upon the NO_(x)photolysis was helpful for the generation of more amounts of O_(3)-oxidized products,which accelerated the SOA nucleation and growth.Combing with NO_(2),the promotion of the SOA yield by SO_(2)was mainly reflected in the increase of mass concentration,which might be due to the elimination of the newly formed particles by the initially formed particles.The observed low oxidation degree of SOA might be attributed to the fast growth of SOA,resulting in the uptake of less oxygenated gas-phase species onto the particle phase.The present findings have important implications for SOA formation affected by anthropogenic–biogenic interactions in the ambient atmosphere.
基金supported by the National Natural Science Foundation of China(Nos.42130606,42022039)the Fund of the Beijing National Laboratory for Molecular Sciences China(No.BNLMS-CXXM-202011)the Project of the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.Y2021013).
文摘Unsaturated ketones are typical oxygenated volatile organic compounds(OVOCs)with high reactivity,and are important precursors in air pollution.The sources of OVOCs are complex and include direct emissions and secondary oxidation formation of VOCs in the atmosphere.2-Cyclohexen-1-one is a widespread substance,and is derived from the industrial catalytic oxidation of cyclohexene.In this paper,we investigated the rate constants of the chemical reactions of 2-cyclohexen-1-one with NO_(3) radicals,which is(7.25±0.29)×10^(-15) cm^(3)·molecule^(-1)·s^(-1) at 298 K and under 1 atm(1 atm=101325Pa).It supplemented the kinetics of NO_(3) radicals database,and revealed its effects in the nighttime atmosphere.In addition,the reaction products of 2-cyclohexen-1-one with NO_(3) radicals were detected by Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS),which revealed a series of nitrate esters in the composition of the secondary organic aerosol(SOA),which may reduce atmospheric visibility.Finally,the possible pathways for the generation of the products were developed.
基金sponsored by the MEP's Special Funds for Research on Public Welfare(No.201409002)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB05020300)the National Science&Technology Pillar Program of China(2013BAC13B03)
文摘Volatile organic compounds (VOCs) are major precursors for ozone and secondary organic aerosol (SOA), both of which greatly harm human health and significantly affect the Earth's climate. We simultaneously estimated ozone and SOA formation from anthropogenic VOCs emissions in China by employing photochemical ozone creation potential (POCP) values and SOA yields. We gave special attention to large molecular species and adopted the SOA yield curves from latest smog chamber experiments. The estimation shows that alkylbenzenes are greatest contributors to both ozone and SOA formation (36.0% and 51.6%, respectively), while toluene and xylenes are largest contributing individual VOCs. Industry solvent use, industry process and domestic combustion are three sectors with the largest contributions to both ozone (24.7%, 23.0% and 17.8%, respectively) and SOA (22.9%, 34.6% and 19.6%, respectively) formation. In terms of the formation potential per unit VOCs emission, ozone is sensitive to open biomass burning, transportation, and domestic solvent use, and SOA is sensitive to industry process, domestic solvent use, and domestic combustion. Biomass stoves, paint application in industrial protection and buildings, adhesives application are key individual sources to ozone and SOA formation, whether measured by total contribution or contribution per unit VOCs emission. The results imply that current VOCs control policies should be extended to cover most important industrial sources, and the control measures for biomass stoves should be tightened. Finally, discrepant VOCs control policies should be implemented in different regions based on their ozone/aerosol concentration levels and dominant emission sources for ozone and SOA formation potential.