期刊文献+
共找到607篇文章
< 1 2 31 >
每页显示 20 50 100
Using Natural Radionuclides to Trace Sources of Suspended Particles in the Lower Reaches of the Yellow River
1
作者 ZHANG Han BURNETT CWilliam +5 位作者 ZHANG Xiaojie ZHAO Shibin YANG Disong NAN Haiming YU Zhigang XU Bochao 《Journal of Ocean University of China》 CAS CSCD 2024年第1期99-108,共10页
Natural radionuclides are powerful tools for understanding the sources and fate of suspended particulate matter(SPM).Particulate matter with different particle sizes behaves differently with respect to adsorption and ... Natural radionuclides are powerful tools for understanding the sources and fate of suspended particulate matter(SPM).Particulate matter with different particle sizes behaves differently with respect to adsorption and desorption.We analyzed the activi-ties and distribution characteristics of multiple natural radionuclides(238U,226Ra,40K,228Ra,7Be and 210Pbex)on size-fractionated SPM at the Lijin Hydrographic Station(Huanghe or Yellow River)every month over a one-year period.Results showed that medium silt(16–32µm)was the main component.As expected,the activity of each radionuclide decreased with an increase of particle size.We examined the sources of SPM with different particle sizes using activity ratios of 226Ra/238U,228Ra/226Ra,40K/238U and 7Be/210Pbex,and concluded that SPM with different particle sizes originated from different sources.Our results indicate that fine SPM(<32µm)was mainly from the erosion of soil along the lower reaches of the Yellow River,while coarse SPM(>32µm)was mainly derived from resuspension of riverbed sediment.During high runoff periods,the concentration of SPM increased significantly,and the pro-portion of fine particles originating upstream increased.Naturally occurring radioactive isotopes,especially on size-fractionated par-ticles,are therefore seen as useful tracers to understand the sources and behaviors of riverine particles transported from land to sea. 展开更多
关键词 the Yellow river suspended particulate matter size-fractions radionuclides sediment sources water elutriator
下载PDF
Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary 被引量:7
2
作者 Hai-bo Yang En-chong Li +1 位作者 Yong Zhao Qiu-hua Liang 《Water Science and Engineering》 EI CAS CSCD 2017年第4期311-319,共9页
Implementation of the water-sediment regulation(WSR) scheme, mainly focused on solving the sedimentation problems of reservoirs and the lower reaches of the Yellow River, has inevitably influenced the sediment distrib... Implementation of the water-sediment regulation(WSR) scheme, mainly focused on solving the sedimentation problems of reservoirs and the lower reaches of the Yellow River, has inevitably influenced the sediment distribution and coastal morphology of the Yellow River Estuary.Using coastline delineation and suspended sediment concentration(SSC) retrieval methods, this study investigated water and sediment changes,identified detailed inter-annual and intra-annual variations of the coastline and SSC in the normal period(NP: 1986-2001, before and after the flood season) and WSR period(WSRP: 2002-2013, before and after WSR). The results indicate that(1) the sedimentation in the low reaches of the Yellow River turned into erosion from 2002 onward;(2) the inter-annual coastline changes could be divided into an accretion stage(1986-1996), a slow erosion stage(1996-2002), and a slow accretion stage(2002-2013);(3) an intra-annual coastline extension occurred in the river mouth in most years of the WSRP; and(4) the mean intra-annual accretion area was 0.789 km^2 in the NP and 4.73 km2 in the WSRP,and the mean SSC increased from 238 mg/L to 293 mg/L in the NP and from 192 mg/L to 264 mg/L in the WSRP. 展开更多
关键词 COASTLINE suspended SEDIMENT concentration Water-sediment REGULATION REMOTE sensing YELLOW river ESTUARY
下载PDF
Chemical and Isotopic Characteristics of the Water and Suspended Particulate Materials in the Yangtze River and Their Geological and Environmental Implications 被引量:10
3
作者 DING Tiping GAO Jianfei +5 位作者 TIAN Shihong SHI Guoyu CHEN Feng WANG Chengyu LUO Xurong HAN Dan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第1期276-360,共85页
The chemical and isotopic characteristics of the water and suspended particulate materials(SPM) in the Yangtze River were investigated on the samples collected from 25 hydrological monitoring stations in the mainste... The chemical and isotopic characteristics of the water and suspended particulate materials(SPM) in the Yangtze River were investigated on the samples collected from 25 hydrological monitoring stations in the mainsteam and 13 hydrological monitoring stations in the major tributaries during 2003 to 2007. The water samples show a large variation in both δD( 30‰ to 112‰) and δ18O( 3.8‰ to 15.4‰) values. Both δD and δ18O values show a decrease from the river head to the Jinsha Jiang section and then increase downstream to the river mouth. It is found that the oxygen and hydrogen isotopic compositions of the Yangtze water are controlled by meteoric precipitation, evaporation, ice(and snow) melting and dam building. The Yangtze SPM concentrations show a large variation and are well corresponded to the spatial and temporal changes of flow speed, runoff and SPM supply, which are affected by the slope of the river bed, local precipitation rate, weathering intensity, erosion condition and anthropogenic activity. The Yangtze SPM consists of clay minerals, clastic silicate and carbonate minerals, heavy minerals, iron hydroxide and organic compounds. From the upper to lower reaches, the clay and clastic silicate components in SPM increase gradually, but the carbonate components decrease gradually, which may reflect changes of climate and weathering intensity in the drainage area. Compared to those of the upper crust rocks, the Yangtze SPM has lower contents of SiO2, CaO, K2 O and Na2 O and higher contents of TFe2 O3 and trace metals of Co, Ni, Cu, Zn, Pb and Cd. The ΣREE in the Yangtze SPM is also slightly higher than that of the upper crust. From the upper to lower reaches, the CaO and MgO contents in SPM decrease gradually, but the SiO2 content increases gradually, corresponding to the increase of clay minerals and decrease of the carbonates. The δ30SiSPM values( 1.1‰ to 0.3‰) of the Yangtze SPM are similar to those of the average shale, but lower than those of the granite rocks( 0.3‰ to 0.3‰), reflecting the effect of silicon isotope fractionation in silicate weathering process. The δ30SiSPM values of the Yangtze SPM show a decreasing trend from the upper to the middle and lower reaches, responding to the variation of the clay content. The major anions of the river water are HCO 3, SO 4 2, Cl, NO 3, SiO 4 4 and F and the major cations include Ca2+, Na+, Mg2+, K+ and Sr2+. The good correlation between HCO3-content and the content of Ca2+may suggest that carbonate dissolution is the dominate contributor to the total dissolved solid(TDS) of the Yangtze River. Very good correlations are also found among contents of Cl, SO4 2, Na+, Mg2+, K+and Sr2+, indicating the important contribution of evaporite dissolution to the TDS of the Yangtze River. High TDS contents are generally found in the head water, reflecting a strong effect of evaporation in the Qinghai-Tibet Plateau. A small increase of the TDS is generally observed in the river mouth, indicating the influence of tidal intrusion. The F and NO3 contents show a clear increase trend from the upstream to downstream, reflecting the contribution of pesticides and fertilizers in the Chuan Jiang section and the middle and lower reaches. The DSi shows a decrease trend from the upstream to downstream, reflecting the effect of rice and grass growth along the Chuan Jiang section and the middle and lower reaches. The dissolved Cu, Zn and Cd in the Yangtze water are all higher than those in world large rivers, reflecting the effect of intensive mining activity along the Yangtze drainage area. The Yangtze water generally shows similar REE distribution pattern to the global shale. The δ30SiDiss values of the dissolved silicon vary from 0.5‰ to 3.7‰, which is the highest among those of the rivers studied. The δ30SiDiss values of the water in the Yangtze mainsteam show an increase trend from the upper stream to downstream. Its DSi and δ30SiDiss are influenced by multiple processes, such as weathering process, phytolith growth in plants, evaporation, phytolith dissolution, growth of fresh water diatom, adsorption and desorption of aqueous monosilicic acid on iron oxide, precipitation of silcretes and formation of clays coatings in aquifers, and human activity. The δ34SSO4 values of the Yangtze water range from 1.7‰ to 9.0‰. The SO4 in the Yangtze water are mainly from the SO4 in meteoric water, the dissolved sulfate from evaporite, and oxidation of sulfide in rocks, coal and ore deposits. The sulfate reduction and precipitation process can also affect the sulfur isotope composition of the Yangtze water. The87Sr/86Sr ratios of the Yangtze water range from 0.70823 to 0.71590, with an average value of 0.71084. The87Sr/86Sr ratio and Sr concentration are primary controlled by mixing of various sources with different87Sr/86Sr ratios and Sr contents, including the limestone, evaporite and the silicate rocks. The atmospheric precipitation and anthropogenic inputs can also contribute some Sr to the river. The δ11B values of the dissolved B in the Yangtze water range from 2.0‰ to 18.3‰, which is affected by multifactors, such as silicate weathering, carbonate weathering, evaporite dissolution, atmospheric deposition, and anthropogenic inputs. 展开更多
关键词 Yangtze river stable isotopes water chemistry suspended Particulate Materials(SPM) HYDROLOGY environmental implication
下载PDF
MIXING OF SALT WATER AND FRESH WATER IN THE CHANGJIANG RIVER ESTUARY AND ITS EFFECTS ON SUSPENDED SEDIMENT 被引量:5
4
作者 沈焕庭 张重乐 《Chinese Geographical Science》 SCIE CSCD 1992年第4期83-91,共9页
Using field hydrological data, the relationship between the mixing of salt water and fresh water and the tidal range/ high tidal level in the Changjiang (Yangtze) River estuary is discussed, and the transporting and c... Using field hydrological data, the relationship between the mixing of salt water and fresh water and the tidal range/ high tidal level in the Changjiang (Yangtze) River estuary is discussed, and the transporting and concentrating of suspended sediment in the estuary were also analysed in respect to the circulation, flocculation and stratified interface resulting from mixing.The calculation results by two-dimentional box model have confirmed the effects of the circulation on the concentrating of suspended sediment in the estuary. The conclusions derived from this work have deepened the understanding on the mixing in the Changjiang River estuary and are of significance in bo’th theory and practice. 展开更多
关键词 MIXING of salt WATER and FRESH WATER suspended sediment circulation FLOCCULATION the CHANGJIANG river ESTUARY
下载PDF
Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River estuary 被引量:9
5
作者 CHEN Shenliang, ZHANG Guoan, YANG Shilun(State Key Laboratory of Estuarine and Coastal Research, East China Normal University,Shanghai 200062, China) 《Journal of Geographical Sciences》 SCIE CSCD 2003年第4期498-506,共9页
A detailed analysis of suspended sediment concentration (SSC) variations over a year period is presented using the data from 8 stations in the Yangtze River estuary and its adjacent waters, together with a discussion ... A detailed analysis of suspended sediment concentration (SSC) variations over a year period is presented using the data from 8 stations in the Yangtze River estuary and its adjacent waters, together with a discussion of the hydrodynamic regimes of the estuary. Spatially, the SSC from Xuliujing downwards to Hangzhou Bay increases almost constantly, and the suspended sediment in the inner estuary shows higher concentration in summer than in winter, while in the outer estuary it shows higher concentration in winter than in summer, and the magnitude is greater in the outer estuary than in the inner estuary, greater in the Hangzhou Bay than in the Yangtze River estuary. The sediments discharged by the Yangtze River into the sea are resuspended by marine dynamics included tidal currents and wind waves. Temporally, the SSC shows a pronounced neap-spring tidal cycle and seasonal variations. Furthermore, through the analysis of dynamic mechanism, it is concluded that wave and tidal current are two predominant factors of sediment resuspension and control the distribution and changes of SSC, in which tidal currents control neap-spring tidal cycles, and wind waves control seasonal variations. The ratio between river discharge and marine dynamics controls spatial distribution of SSC. 展开更多
关键词 suspended sediment concentration temporal and spatial changes sediment resuspension Yangtze river estuary
下载PDF
Chemical and Isotopic Characters of the Water and Suspended Particulate Materials in the Yellow River and Their Geological and Environmental Implications 被引量:5
6
作者 DING Tiping GAO Jianfei +5 位作者 TIAN Shihong WANG Huaibai LI Ming WANG Chengyu LUO Xurong HANG Dan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第1期285-351,共67页
The chemical and isotopic characteristics of the water and suspended particulate materials (SPM) in the Yellow River were investigated on the samples collected from 29 hydrological monitoring stations in the mainste... The chemical and isotopic characteristics of the water and suspended particulate materials (SPM) in the Yellow River were investigated on the samples collected from 29 hydrological monitoring stations in the mainstem and several major tributaries during 2004 to 2007. The JD and δ^18O values of the Yellow River water vary in large ranges from -32%0 to -91‰ and from -3.1‰ to -12.5‰, respectively. The characters of H and O isotope variations indicate that the major sources of the Yellow River water are meteoric water and snow melting water, and water cycle in the Yellow River basin is affected strongly by evaporation process and human activity. The average SPM content (9.635 g/L) of the Yellow River is the highest among the world large rivers. Compared with the Yangtze River, the Yellow River SPM has much lower clay content and significantly higher contents of clastic silicates and carbonates. In comparison to the upper crust rocks, the Yellow River SPM contains less SiO2, CaO, K2O and Na2O, but more TFe203, Co, Ni, Cu, Zn, Pb and Cd. The abnormal high Cd contents found in some sample may be related to local industrial activity. The REE contents and distribution pattern of the Yellow River SPM are very close to the average value of the global shale. The average δ^30Sisp in the Yellow River (-0.11‰) is slightly higher than the average value (-0.22‰) of the Yangtze River SPM. The major factors controlling the δ^30Si SPM of the Yellow River are the soil supply, the isotopic composition of the soil and the climate conditions. The TDS in the Yellow River are the highest among those of world large rivers. Fair correlations are observed among Cl, Na^+, K^+, and Mg^2+ contents of the Yellow River water, indicating the effect of evaporation. The Ca^2+ and Sr^2+ concentrations show good correlation to the SO42 concentration rather than HCO3-concentration, reflecting its origin from evaporates. The NO3-contents are affected by farmland fertilization. The Cu, Zn and Cd contents in dissolved load of the Yellow River water are all higher than those of average world large rivers, reflecting the effect of human activity. The dissolved load in the Yellow River water generally shows a REE distribution pattern parallel to those for the Yangtze River and the Xijiang River. The δ^30Si values of the dissolved silicon vary in a range from 0.4%0 to 2.9%0, averaging 1.34%o. The major processes controlling the Dsi weathering process of silicate rocks, growth of and δ^30SiDiss of the Yellow River water are the phytolith in plants, evaporation, dissolution of phytolith in soil, growth of fresh water diatom, adsorption and desorption of aqueous monosilicic acid on iron oxide and human activities. The average δ^30^SiDiss value of the Yellow River is significantly lower than that of the Nile River, Yangtze River and Siberia rivers, but higher than those of other rivers, reflecting their differences in chemical weathering and biological activity. The δ^34SSO4 values of the Yellow River water range from -3.8%0 to 14.1%o, averaging 7.97%0. There is some correlation between SO4^2- content and δ^34SSO4. The factors controlling the δ^34SSO4 of the Yellow River water are the SO4 in the meteoric water, the SO4 from gypsum or anhydrite in evaporite rocks, oxidation and dissolution of sulfides in the mineral deposits, magmatic rocks and sedimentary rocks, the sulfate reduction and precipitation process and the sulfate from fertilizer. The ^87Sr/^86Sr ratios of all samples range from 0.71041 to 0.71237, averaging 0.71128. The variations in the ^87Sr/^86Sr ratio and Sr concentration of river water are primarily caused by mixing of waters of various origins with different 87Sr/S6Sr ratios and Sr contents resulting from water-rock interaction with different rock types. 展开更多
关键词 Yellow river stable isotopes water chemistry suspended particulate materials (SPM) HYDROLOGY environmental implication
下载PDF
Modeling of suspended sediment transport with wave-induced longshore current in Huanghe (Yellow) River Delta 被引量:4
7
作者 LI Changliang LIANG Bingchen ZHANG Jing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2009年第3期65-74,共10页
A three-dimensional suspended sediment model (SED) developed by the present authors is coupled with the combinatorial model of COHERENS (Luyten et al., 1999) (the three-dimensional coupled hydrodynamical-ecologic... A three-dimensional suspended sediment model (SED) developed by the present authors is coupled with the combinatorial model of COHERENS (Luyten et al., 1999) (the three-dimensional coupled hydrodynamical-ecological model for Regional and Shelf Seas) and SWAN (Holthuijsen et al., 2004) (the third generation wave model). SWAN is regarded as a subroutine of COHERENS and gets time- and space-varying current velocity and surface elevation from COHERENS. COHERENS gets time- and space- varying wave relevant parameters provided by SWAN. Effects of wave on current are applied in bottom shear stress, wave-induced depth-dependent radiation stress and surface drag coefficient calculation. At the same time, the damping function of suspended sediment on turbulence is introduced into COHERENS. So the sediment model SED has feedback on circulation model COHERENS. The SED obtains current associated parameters from COHERENS. Then a coupled hydrodynamic-sediment model COHERENS-SED being able to account for interaction between wave and current is obtained. COHERENS-SED is adopted to simulate three-dimensional suspended sediment transport in the Huanghe River delta. In terms of simulation results, there is obvious difference between top and bottom layer of wave-induced longshore current. The values of time series of sediment concentration gotten by COHERENS-SED have, generally, an accepted agreement extent with measurement. Significant wave heights and wave periods obtained by COHERENS-SED show that wave simulation case with currentts effect can give better agreement extent with measurement than case without current's effect. In the meantime, suspended sediment concentration distributing rule obtained by COHERENS-SED is similar to former researches and measurement. 展开更多
关键词 Huanghe river delta suspended sediment wave-induced longshore current COHERENS SWAN COHERENS-SED
下载PDF
STUDY ON THE ISOTHERMS OF THE INTERACTION BETWEEN SUSPENDED PARTICLES AND Cu (Ⅱ) IN THE HUANGHE RIVER 被引量:3
8
作者 李改枝 郭博书 +3 位作者 刘颖 红霞 李景峰 李北罡 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2000年第2期178-182,共5页
The isotherms of the interaction between the suspended particles and Cu 2+ ,and the effects of lysine and asparaginic acid on the isotherms in the Huanghe (Yellow) River were studied by applying the theory and method ... The isotherms of the interaction between the suspended particles and Cu 2+ ,and the effects of lysine and asparaginic acid on the isotherms in the Huanghe (Yellow) River were studied by applying the theory and method of interfacial stepwise ion/coordination particle exchange. We obtained a new stepped river isotherm, formed by two curves joined together with a “plateau” in the middle. The adsorption equilibrium constants K 1 and K 2 were calculated by using the isothermal equation of surface stepwise ion exchange. Amino acid in small amount promotes exchange adsorption of the suspended particles with Cu 2+ . The degree of promotive action relates to the isoelectric point of amino acid. The promotive effect of lysine is bigger than that of asparaginic acid. 展开更多
关键词 theory of INTERFACIAL STEPWISE ion EXCHANGE suspended particle copper AMINO acid the Huanghe river
下载PDF
Diagnostic experiments for transport mechanisms of suspended sediment discharged from the Yellow River in the Bohai Sea 被引量:3
9
作者 LI Guosheng XUE Xinghua +2 位作者 LIU Ying WANG Hailong LIAO Heping 《Journal of Geographical Sciences》 SCIE CSCD 2010年第1期49-63,共15页
Five diagnostic experiments with a 3D baroclinic hydrodynamic and sediment transport model ECOMSED in couple with the third generation wave model SWAN and the Grant-Madsen bottom boundary layer model driven by the mon... Five diagnostic experiments with a 3D baroclinic hydrodynamic and sediment transport model ECOMSED in couple with the third generation wave model SWAN and the Grant-Madsen bottom boundary layer model driven by the monthly sediment load of the Yellow River, were conducted to separately diagnose effects of different hydrodynamic factors on transport of suspended sediment discharged from the Yellow River in the Bohai Sea. Both transport and spatio-temporal distribution of suspended sediment concentration in the Bohai Sea were numerially simulated. It could be from the Yellow River cannot be delivered in concluded that suspended sediment discharged long distance under the condition of tidal current. Almost all of sediments from the Yellow River are deposited outside the delta under the condition of wind-driven current, and only very small of them are transported faraway. On the basis of wind forcing, sediments from the Yellow River are mainly transported north-northwestward, and others which are first delivered to the Laizhou Bay are continuously moved northward. An obvious 3D structure characteristic of sediment transport is produced in the wind-driven and tide-induced residual circulation condition. Transport patterns at all layers are generally consistent with circulation structure, but there is apparent deviation between the depth-averaged sediment flux and the circulation structure. The phase of temporal variation of sediment concentration is consistent with that of the bottom shear stress, both of which are proved to have a ten-day cycle in wave and current condition. 展开更多
关键词 sediment from the Yellow river suspended transport dynamic mechanism diagnostic experiment
下载PDF
The influence of runoff and wind on the dispersion patterns of suspended sediment in the Zhujiang(Pearl) River Estuary based on MODIS data 被引量:1
10
作者 Suying Ou Qingshu Yang +3 位作者 Xiangxin Luo Fan Zhu Kaiwen Luo Hao Yang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第3期26-35,共10页
Cloud-free moderate-resolution imaging spectroradiometer(MODIS) images of the Zhujiang(Pearl) River Estuary(ZRE) taken between 2002 and 2012 are retrieved and used to study the spatial and temporal patterns of suspend... Cloud-free moderate-resolution imaging spectroradiometer(MODIS) images of the Zhujiang(Pearl) River Estuary(ZRE) taken between 2002 and 2012 are retrieved and used to study the spatial and temporal patterns of suspended sediment concentrations(SSCs) across the estuary under runoff, wind, and tropical storm conditions.Five typical dispersal patterns of suspended sediments in the estuary are defined: Case I shows generally low SSCs under low dynamics; Case Ⅱ shows a river-dominant dispersal pattern of suspended sediments from the outlets,particularly from Modaomen, Jiaomen, Hengmen, and others; Case Ⅲ shows wind-dominant dispersal of high SSCs derived from the west shoal and southwesterly transport under a strong NE wind; Case IV is the combination of relatively large runoff and wind; and Case V is caused by a strong tropical storm with high river discharge and wind, which is characterized by the high SSCs across the entire estuary that are transported eastward by winddriven and buoyancy currents outside the estuary. Runoff is a dominant factor that controls seasonal and annual SSC variations in the ZRE, with the area of high SSCs being largest in the summer and smallest in the spring. The correlation coefficients between the monthly averaged river-suspended sediment discharge and the area of the high SSCs are approximately 0.6. The wind power over the west shoal increases with a wind speed, which induces more sediment resuspension and shows a close relationship between the wind speed and high SSC area. 展开更多
关键词 Zhujiang(Pearl) river ESTUARY suspended sediment concentration(SSC) moderate-resolution imaging SPECTRORADIOMETER WIND RUNOFF TIDES
下载PDF
QUANTITATIVE MODELING OF SUSPENDED SEDIMENT IN MIDDLE CHANGJIANG RIVER FROM MODIS 被引量:4
11
作者 LIU Can-de HE Bao-yin +1 位作者 LI Mao-tian REN Xian-you 《Chinese Geographical Science》 SCIE CSCD 2006年第1期79-82,共4页
Remote sensing techniques have been widely used to observe bodies of water. Among satellite sensors commonly used for water quality studies, the Moderate-resolution Imaging Spectroradiometer (MODIS) has potential in w... Remote sensing techniques have been widely used to observe bodies of water. Among satellite sensors commonly used for water quality studies, the Moderate-resolution Imaging Spectroradiometer (MODIS) has potential in water quality monitoring, because of its moderate spatial resolution and high temporal resolution. In this paper, the utility of MODIS data for suspended sediment monitoring in the middle Changjiang (Yangtze) River is studied. It is concluded that suspended sediment concentration correlates well with reflectance values (R1-R2)/(R1+R2) retrieved from MODIS 250m image data (R2=0.72, n=41). Based on this correlation, we obtain the empirical model of suspended sediment concentration in the middle Changjiang River from MODIS. It is shown that it is useful for MODIS data to monitor this parameter of water quality. 展开更多
关键词 长江 沉积物 水质 分辨率 MODIS 泥沙 遥感技术
下载PDF
Estimation of total suspended matter in the Zhujiang (Pearl) River estuary from Hyperion imagery 被引量:3
12
作者 刘大召 付东洋 +1 位作者 徐兵 沈春燕 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第1期16-21,共6页
Although remote sensing data have been used to estimate total suspended matter (TSM) in coastal waters, it has limitations when applied to estuary waters in low spatial resolution situations. The spatial resolution of... Although remote sensing data have been used to estimate total suspended matter (TSM) in coastal waters, it has limitations when applied to estuary waters in low spatial resolution situations. The spatial resolution of ocean color satellites such as SeaWiFS and MODIS is usually ~1 km, and therefore is not adequate for small, local-scale areas such as the Zhujiang (Pearl) River estuary. In contrast, 30 m-resolution EO-1 Hyperion imagery has potential for studying TSM in localized areas. We measured the surface spectral radiance reflectance of the river estuary water in the visible and near infra-red spectral range. Sensitivity analysis indicated that the ratio of remote sensing reflectance at 813 nm (Rrs(813)) to reflectance at 559 nm (Rrs(559)) could be used to estimate TSM concentration, and a linear relationship was established between the ratio and in-situ TSM concentration. We applied the linear relationship to Hyperion imagery to map TSM concentration in the estuary. The Hyperion imagery provided sufficient spatial resolution to detect spatiotemporal changes in TSM concentrations in the estuary small estuary area. This study demonstrated the usefulness of Hyperion imagery for mapping the distribution of TSM in estuary waters. 展开更多
关键词 HYPERION 珠江河口 图像映射 总悬浮颗粒物 估计 空间分辨率 悬浮物浓度 SEAWIFS
下载PDF
Numerical Study on Seasonal Transportation of the Suspended Sediments in the Modern Yellow River Mouth Effected by the Artificial Water and Sediment Regulation 被引量:3
13
作者 WANG Nan QIAO Lulu +5 位作者 LI Guangxue ZHONG Yi SONG Dehai DING Dong GAO Fei JI Fengying 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第1期20-30,共11页
Since 2002, an artificial water and sediment regulation(AWSR) has been carried out, which largely reduced water and sediment discharged from the Yellow River into the Bohai Sea. Although the sediment transport in the ... Since 2002, an artificial water and sediment regulation(AWSR) has been carried out, which largely reduced water and sediment discharged from the Yellow River into the Bohai Sea. Although the sediment transport in the Yellow River Mouth(YRM) has been observed and modeled intensively since AWSR, but preferentially for the non-storm conditions. In this study, a three-dimensional current-wave-sediment coupled model, DHI-MIKE numerical model, was used to examine the seasonal suspended-sediment transport in the YRM after the AWSR. Results show that the seasonal distribution of suspended-sediments in the YRM is dominated by wind and wave rather than river input. The major transport pathway of suspended-sediments is from the western Laizhou Bay to the Bohai Strait during the winter monsoon, especially in storm events. In addition, about 66% of the river sediments deposit within 30 km of the YRM, which is smaller than previous estimations. It suggests that the YRM has been eroded in recent decades. 展开更多
关键词 YELLOW river MOUTH artificial water and SEDIMENT regulation MIKE suspended-sediment transport SEASONAL variation
下载PDF
Modeling transportation of suspended solids in Zhujiang River estuary, South China 被引量:2
14
作者 陈晓宏 陈永勤 赖国友 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2005年第1期1-10,共10页
A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using h... A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using hourly measured data of sediment contents during 25–26, July 1999. The results showed that modeled contents matched well with measured ones and that the modeled top layer distribution agreed with the remotely sensed image of suspended solids in summer. The modeled results showed clearly the layers of sus- pended solids in depth, with larger sediment contents in lower layers though in the interface between salt water and freshwater the lowest contents appeared in middle layer. In overall, the suspended solids inflow from 8 rivers, transport southwestward, and carried by strong coastal flow in Zhujiang River estuary. Contours of sediment contents in the estuary spread further to the open sea during ebb tide rather than flood tide which reflects that the suspended solids in the estuary are land sourced. 展开更多
关键词 中国 珠江 三维模型 悬浮物 水力模型 海洋化学
下载PDF
Principal Denudation Processes and Their Contribution to Fluvial Suspended Sediment Yields in the Upper Yangtze River Basin and Volga River Basin 被引量:1
15
作者 VALENTIN Golosov ZHANG Xin-bao +2 位作者 HE Xiu-bin TANG Qiang ZHOU Ping 《Journal of Mountain Science》 SCIE CSCD 2015年第1期101-122,共22页
This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China a... This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China and the Volga River Basin in Eastern Europe. In the Upper Yangtze River Basin, natural factors including topography, climate,lithology and tectonic activity are responsible for the spatial variation in the magnitude of denudation rates.Human disturbances have contributed to the temporal changes of soil erosion and fluvial SSY during the past decades. On one hand, land use change caused by deforestation and land reclamation has played an important role in the acceleration of sediment production from the central hilly area and lower Jinsha catchment; On the other hand, diverse soil conservation practices(e.g., reforestation,terracing) have contributed to a reduction of soil erosion and sediment production since the late 1980 s.It was difficult to explicitly decouple the effect of mitigation measures in the Lower Jinsha River Basindue to the complexity associated with sediment redistribution within river channels(active channel migration and significant sedimentation). The whole basin can be subdivided into seven sub-regions according to the different proportional inputs of principal denudation processes to riverine SSY. In the Volga River Basin, anthropogenic sheet, rill and gully erosion are the predominant denudation processes in the southern region, while channel bank and bed erosion constitutes the main source of riverine suspended sediment flux in the northern part of the basin. Distribution of cultivated lands significantly determined the intensity of denudation processes.Local relief characteristics also considerably influence soil erosion rates and SSY in the southern Volga River Basin. Lithology, soil cover and climate conditions determined the spatial distribution of sheet, rill and gully erosion intensity, but they play a secondary role in SSY spatial variation. 展开更多
关键词 长江上游流域 剥蚀过程 悬浮泥沙 河流域 伏尔加 产量 土壤侵蚀速率 土地利用变化
下载PDF
Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary 被引量:5
16
作者 ZHAN Chao YU Junbao +4 位作者 WANG Qing LI Yunzhao ZHOU Di XING Qinghui CHU Xiaojing 《Chinese Geographical Science》 SCIE CSCD 2017年第6期934-947,共14页
Accurate assessment of surface suspended sediment concentration(SSSC) in estuary is essential to address several important issues: erosion, water pollution, human health risks, etc. In this study, an empirical cubic r... Accurate assessment of surface suspended sediment concentration(SSSC) in estuary is essential to address several important issues: erosion, water pollution, human health risks, etc. In this study, an empirical cubic retrieval model was developed for the retrieval of SSSC from Yellow River Estuary. Based on sediments and seawater collected from the Yellow River and southeastern Laizhou Bay, SSSC conditions were reproduced in the laboratory at increasing concentrations within a range common to field observations. Continuous spectrum measurements of the various SSSCs ranging from 1 to 5700 mg/l were carried out using an Ava Field-3 spectrometer. The results indicated the good correlation between water SSSC and spectral reflectance(Rrs) was obtained in the spectral range of 726–900 nm. At SSSC greater than 2700 mg/L, the 740–900 nm spectral range was less susceptible to the effects of spectral reflectance saturation and more suitable for retrieval of high sediment concentrations. The best correlations were obtained for the reflectance ratio of 820 nm to 490 nm. Informed by the correlation between Rrs and SSSC, a retrieval model was developed(R2 = 0.992). The novel cubic model, which used the ratio of a near-infrared(NIR) band(740–900 nm) to a visible band(400–600 nm) as factors, provided robust quantification of high SSSC water samples. Two high SSSC centers, with an order of 103 mg/l, were found in the inversion results around the abandoned Diaokou River mouth, the present Yellow River mouth to the abandoned Qingshuigou River mouth. There was little sediment exchange between the two high SSSC centers due to the directions of the residual currents and vertical mixing. 展开更多
关键词 悬浮泥沙浓度 黄河河口 遥感反演 表层 SSSC 可见光波段 检索模型 反射光谱
下载PDF
The curve of ion exchange ratio(%)-pH of the interaction between suspended particles with Cd(Ⅱ) in the Yellow River
17
作者 Yang Hong wei, Jiao Xiao bao, Guo Bo shu Institute of Environmental Chemistry, Inner Mongolia Normal University, Huhhot 010022,China Yang Yu ying Department of Chemistry, Inner Mongolia Teachers College for Nationalities, China Song Zhi xi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第2期125-129,共5页
The curve of ion exchange ratio(%) pH of the interaction between suspended particles with Cd(II) in the Yellow River was studied. The effects of lysine on this curve have been also investigated. The results showed th... The curve of ion exchange ratio(%) pH of the interaction between suspended particles with Cd(II) in the Yellow River was studied. The effects of lysine on this curve have been also investigated. The results showed that (1) Cadmium in Cd(OH) + form in the suspended particles exchanges with the cations. The exchange ratio of Cd 2+ is nearly at its greatest value in the range of pH (8.0—8.5) in natural aquatic system; (2) Ion exchange ratio decreases as the concentration of Cd 2+ raises from 8.9×10 -6 mol/L to 2×8.9×10 -6 mol/L; (3) At the lysine concentration of 6 8×10 -6 mol/L, it can promote the ion exchange ratio; (4) Adsorption of the suspended particles to cadmium is weaker in seawater and Jin Sha River than in the Yellow River. 展开更多
关键词 liquid solid interaction CADMIUM ion exchange technique suspended particles Yellow river.
下载PDF
Characteristics of Suspended Particulate Matter and the Coastal Turbidity Maximum Areas of the Mekong River 被引量:1
18
作者 Vu Duy Vinh Tran Anh Tu +1 位作者 Tran Dinh Lan Nguyen Ngoc Tien 《Journal of Environmental Science and Engineering(A)》 2015年第2期67-78,共12页
关键词 最大浑浊带 湄公河 悬浮颗粒物 沿岸 悬浮泥沙浓度 三维系统 悬移质泥沙 沿海地带
下载PDF
Geochemistry of Water and Suspended Particulate in the Lower Yangtze River: Implications for Geographic and Anthropogenic Effects
19
作者 Xuyin Yuan Jizhou Li +2 位作者 Changping Mao Junfeng Ji Zhongfang Yang 《International Journal of Geosciences》 2012年第1期81-92,共12页
The lower Yangtze River undergoes intense anthropogenic activities and various natural progress compared to the upper-middle reaches. We explore the aqueous geochemistry of ions and elements of suspended particulate i... The lower Yangtze River undergoes intense anthropogenic activities and various natural progress compared to the upper-middle reaches. We explore the aqueous geochemistry of ions and elements of suspended particulate in order to recognize the effects of natural conditions and anthropogenic inputs on rivers. These results show that total dissolved solids of water in the lower Yangtze River are similar as those in the upper-middle reaches of mainstream, but higher in tributaries. The major elements of suspended particulate in high-flow regime (HFR) have approximate concentrations with those in low-flow regime (LFR). But remarkable high concentrations of trace elements in tributaries exhibit regardless of HFR or LFR. Multivariate statistics show the suspended particulate matter (SPM) of mainstream presents similar characteristics in flood season and diverse characteristics in dry season. While SPM of tributaries reveals different results. The majority of suspended matter originates from municipal and industrial discharge both in flood season and dry season, and a part from road runoff in flood season, showing an effect of hydrological regime. Mining activity induces remarkably high concentrations of metals regardless of HFR or LFR. Therefore, the geochemistry of SPM in the lower reach of Yangtze River are significantly affected by the anthropogenic input of different sources, which is different from the upper-middle Yangtze River. 展开更多
关键词 suspended PARTICULATE Major ELEMENT Trace ELEMENT HYDROLOGICAL Regime The YANGTZE river
下载PDF
Spatial Variation and Risk Assessment of Arsenic and Heavy Metals in Surface Water and Suspended Particulate Matter in Tail Reaches of the Yellow River, China
20
作者 SUN Zhigao LI Jing +2 位作者 TIAN Liping CEHN Bingbing HU Xingyun 《Chinese Geographical Science》 SCIE CSCD 2021年第1期181-196,共16页
To determine the pollution levels and potential toxic risks of arsenic(As) and heavy metals(Cr, Ni, Cu, Zn, Pb and Cd) in water and suspended particulate matter(SPM) in tail reaches(including freshwater reach and low-... To determine the pollution levels and potential toxic risks of arsenic(As) and heavy metals(Cr, Ni, Cu, Zn, Pb and Cd) in water and suspended particulate matter(SPM) in tail reaches(including freshwater reach and low-salinity reach) of the Yellow River as the Flow-Sediment Regulation Project(FSRP) has been carried out for approximately 15 yr, the surface water and SPM were sampled at pre-flood(April) and post-flood seasons(October). Results showed that similar changes of As and metal levels in water and SPM were observed along the tail reaches at pre-flood or post-flood season. Compared to pre-flood season, the levels of As, Cu, Cr and Ni in freshwater reach and the concentrations of Cr and Ni in low-salinity reach rose greatly at post-flood season. The levels of As and metals in SPM of freshwater reach or low-salinity reach at pre-flood season were significantly higher than those at post-flood season(P < 0.01).The pollutions of As and metals in surface water of tail reaches at pre-flood or post-flood season were not serious. The SPM in freshwater reach at pre-flood season were polluted by Cd, As, Cr, Cu and Ni while those in low-salinity reach were polluted by Cd and Cr. The SPM in freshwater reach at post-flood season were polluted by Cd and Pb while those in low-salinity reach were polluted by Cd and Cr.Cd was identified as heavy metal of primary concern at both pre-flood and post-flood seasons. Combined with the existed data reported in present research, this study found that the toxic risk of As and metals in SPM of tail reaches at pre-flood season was higher than that at post-flood season, implying that the implementation of FSRP during flooding season, to a great extent, reduced the toxic risk of these elements. With the long-term implementation of FSRP, the pollution levels of As and metals(particularly for Cd) in SPM of tail reaches might be elevated and the potential toxic risk primarily produced by Cr, Ni and As might be increased if effective measures were not taken in future. 展开更多
关键词 arsenic and heavy metals surface water suspended particulate matter tail reaches Yellow river
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部