In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based ...In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes.展开更多
This paper analyses the greenhouse gas (GHG) emission along the value chains of two strategic commodities in West Africa (rice and maize) in four pilot countries: Ghana, Senegal Benin and Cote D’Ivoire. The Value Cha...This paper analyses the greenhouse gas (GHG) emission along the value chains of two strategic commodities in West Africa (rice and maize) in four pilot countries: Ghana, Senegal Benin and Cote D’Ivoire. The Value Chains Analysis and Greenhouse model used in this study, provides insight into the relationship between output maximization and GHG emissions to help define optimal intervention approaches that minimize emissions while maximizing the potential yield, hence boost food security. It highlights intervention measures for improvement of production and productivity along with the identification of mitigation measures to reduce GHG emissions. It also revealed that the largest GHG emission factor from maize farming in the selected countries is from the application of nitrogen fertilizers (NO2), and for rice farming, depending on the systems, e.g. rain fed, irrigated or multiple aeration, the emission is mostly due to anaerobic decomposition of methane (CH4) which increases with flooding practice.展开更多
基金The Natural Science Foundation of Henan Province(No.232300421097)the Program for Science&Technology Innovation Talents in Universities of Henan Province(No.23HASTIT019,24HASTIT038)+2 种基金the China Postdoctoral Science Foundation(No.2023T160596,2023M733251)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2023D11)the Song Shan Laboratory Foundation(No.YYJC022022003)。
文摘In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes.
文摘This paper analyses the greenhouse gas (GHG) emission along the value chains of two strategic commodities in West Africa (rice and maize) in four pilot countries: Ghana, Senegal Benin and Cote D’Ivoire. The Value Chains Analysis and Greenhouse model used in this study, provides insight into the relationship between output maximization and GHG emissions to help define optimal intervention approaches that minimize emissions while maximizing the potential yield, hence boost food security. It highlights intervention measures for improvement of production and productivity along with the identification of mitigation measures to reduce GHG emissions. It also revealed that the largest GHG emission factor from maize farming in the selected countries is from the application of nitrogen fertilizers (NO2), and for rice farming, depending on the systems, e.g. rain fed, irrigated or multiple aeration, the emission is mostly due to anaerobic decomposition of methane (CH4) which increases with flooding practice.