With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The networ...With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The network security environment in the era of big data presents the characteristics of large amounts of data,high diversity,and high real-time requirements.Traditional security defense methods and tools have been unable to cope with the complex and changing network security threats.This paper proposes a machine-learning security defense algorithm based on metadata association features.Emphasize control over unauthorized users through privacy,integrity,and availability.The user model is established and the mapping between the user model and the metadata of the data source is generated.By analyzing the user model and its corresponding mapping relationship,the query of the user model can be decomposed into the query of various heterogeneous data sources,and the integration of heterogeneous data sources based on the metadata association characteristics can be realized.Define and classify customer information,automatically identify and perceive sensitive data,build a behavior audit and analysis platform,analyze user behavior trajectories,and complete the construction of a machine learning customer information security defense system.The experimental results show that when the data volume is 5×103 bit,the data storage integrity of the proposed method is 92%.The data accuracy is 98%,and the success rate of data intrusion is only 2.6%.It can be concluded that the data storage method in this paper is safe,the data accuracy is always at a high level,and the data disaster recovery performance is good.This method can effectively resist data intrusion and has high air traffic control security.It can not only detect all viruses in user data storage,but also realize integrated virus processing,and further optimize the security defense effect of user big data.展开更多
The conventional dynamic heterogeneous redundancy(DHR)architecture suffers from the security threats caused by the stability differences and similar vulnerabilities among the executors.To overcome these challenges,we ...The conventional dynamic heterogeneous redundancy(DHR)architecture suffers from the security threats caused by the stability differences and similar vulnerabilities among the executors.To overcome these challenges,we propose an intelligent DHR architecture,which is more feasible by intelligently combining the random distribution based dynamic scheduling algorithm(RD-DS)and information weight and heterogeneity based arbitrament(IWHA)algorithm.In the proposed architecture,the random distribution function and information weight are employed to achieve the optimal selection of executors in the process of RD-DS,which avoids the case that some executors fail to be selected due to their stability difference in the conventional DHR architecture.Then,through introducing the heterogeneity to restrict the information weights in the procedure of the IWHA,the proposed architecture solves the common mode escape issue caused by the existence of multiple identical error output results of similar vulnerabilities.The experimental results characterize that the proposed architecture outperforms in heterogeneity,scheduling times,security,and stability over the conventional DHR architecture under the same conditions.展开更多
In this study, we investigated the performance improvement caused by the addition of copper(Cu)nanoparticles to high-density polyethylene(HDPE) matrix material. Composite materials, with filler percentages of 0.0, 2.0...In this study, we investigated the performance improvement caused by the addition of copper(Cu)nanoparticles to high-density polyethylene(HDPE) matrix material. Composite materials, with filler percentages of 0.0, 2.0, 4.0, 6.0, 8.0, and 10.0 wt% were synthesized through the material extrusion(MEX)3D printing technique. The synthesized nanocomposite filaments were utilized for the manufacturing of specimens suitable for the experimental procedure that followed. Hence, we were able to systematically investigate their tensile, flexural, impact, and microhardness properties through various mechanical tests that were conducted according to the corresponding standards. Broadband Dielectric Spectroscopy was used to investigate the electrical/dielectric properties of the composites. Moreover, by employing means of Raman spectroscopy and thermogravimetric analysis(TGA) we were also able to further investigate their vibrational, structural, and thermal properties. Concomitantly, means of scanning electron microscopy(SEM), as well as atomic force microscopy(AFM), were used for the examination of the morphological and structural characteristics of the synthesized specimens, while energy-dispersive Xray spectroscopy(EDS) was also performed in order to receive a more detailed picture on the structural characteristics of the various synthesized composites. The corresponding nanomaterials were also assessed for their antibacterial properties regarding Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli) with the assistance of a method named screening agar well diffusion. The results showed that the mechanical properties of HDPE benefited from the utilization of Cu as a filler, as they showed a notable improvement. The specimen of HDPE/Cu 4.0 wt% was the one that presented the highest levels of reinforcement in four out of the seven tested mechanical properties(for example, it exhibited a 36.7%improvement in the flexural strength, compared to the pure matrix). At the same time, the nanocomposites were efficient against the S. aureus bacterium and less efficient against the E. coli bacterium.The use of such multi-functional, robust nanocomposites in MEX 3D printing is positively impacting applications in various fields, most notably in the defense and security sectors. The latter becomes increasingly important if one takes into account that most firearms encompass various polymeric parts that require robustness and improved mechanical properties, while at the same time keeping the risk of spreading various infectious microorganisms at a bare minimum.展开更多
In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to p...In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach.展开更多
With the rapid development of mobile communication technology,the application of internet of vehicles(IoV)services,such as for information services,driving safety,and traffic efficiency,is growing constantly.For busin...With the rapid development of mobile communication technology,the application of internet of vehicles(IoV)services,such as for information services,driving safety,and traffic efficiency,is growing constantly.For businesses with low transmission delay,high data processing capacity and large storage capacity,by deploying edge computing in the IoV,data processing,encryption and decision-making can be completed at the local end,thus providing real-time and highly reliable communication capability.The roadside unit(RSU),as an important part of edge computing in the IoV,fulfils an important data forwarding function and provides an interactive communication channel for vehicles and server providers.Additional computing resources can be configured to accommodate the computing requirements of users.In this study,a virtual traffic defense strategy based on a differential game is proposed to solve the security problem of user-sensitive information leakage when an RSU is attacked.An incentive mechanism encourages service vehicles within the hot range to send virtual traffic to another RSU.By attracting the attention of attackers,it covers the target RSU and protects the system from attack.Simulation results show that the scheme provides the optimal strategy for intelligent vehicles to transmit virtual data,and ensures the maximization of users’interests.展开更多
Networks have become an integral part of today’s world. The ease of deployment, low-cost and high data rates have contributed significantly to their popularity. There are many protocols that are tailored to ease the ...Networks have become an integral part of today’s world. The ease of deployment, low-cost and high data rates have contributed significantly to their popularity. There are many protocols that are tailored to ease the process of establishing these networks. Nevertheless, security-wise precautions were not taken in some of them. In this paper, we expose some of the vulnerability that exists in a commonly and widely used network protocol, the Address Resolution Protocol (ARP) protocol. Effectively, we will implement a user friendly and an easy-to-use tool that exploits the weaknesses of this protocol to deceive a victim’s machine and a router through creating a sort of Man-in-the-Middle (MITM) attack. In MITM, all of the data going out or to the victim machine will pass first through the attacker’s machine. This enables the attacker to inspect victim’s data packets, extract valuable data (like passwords) that belong to the victim and manipulate these data packets. We suggest and implement a defense mechanism and tool that counters this attack, warns the user, and exposes some information about the attacker to isolate him. GNU/Linux is chosen as an operating system to implement both the attack and the defense tools. The results show the success of the defense mechanism in detecting the ARP related attacks in a very simple and efficient way.展开更多
基金This work was supported by the National Natural Science Foundation of China(U2133208,U20A20161).
文摘With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The network security environment in the era of big data presents the characteristics of large amounts of data,high diversity,and high real-time requirements.Traditional security defense methods and tools have been unable to cope with the complex and changing network security threats.This paper proposes a machine-learning security defense algorithm based on metadata association features.Emphasize control over unauthorized users through privacy,integrity,and availability.The user model is established and the mapping between the user model and the metadata of the data source is generated.By analyzing the user model and its corresponding mapping relationship,the query of the user model can be decomposed into the query of various heterogeneous data sources,and the integration of heterogeneous data sources based on the metadata association characteristics can be realized.Define and classify customer information,automatically identify and perceive sensitive data,build a behavior audit and analysis platform,analyze user behavior trajectories,and complete the construction of a machine learning customer information security defense system.The experimental results show that when the data volume is 5×103 bit,the data storage integrity of the proposed method is 92%.The data accuracy is 98%,and the success rate of data intrusion is only 2.6%.It can be concluded that the data storage method in this paper is safe,the data accuracy is always at a high level,and the data disaster recovery performance is good.This method can effectively resist data intrusion and has high air traffic control security.It can not only detect all viruses in user data storage,but also realize integrated virus processing,and further optimize the security defense effect of user big data.
基金supported by the National Key Research and Development Program of China(2020YFE0200600)the National Natural Science Foundation of China(U22B2026)。
文摘The conventional dynamic heterogeneous redundancy(DHR)architecture suffers from the security threats caused by the stability differences and similar vulnerabilities among the executors.To overcome these challenges,we propose an intelligent DHR architecture,which is more feasible by intelligently combining the random distribution based dynamic scheduling algorithm(RD-DS)and information weight and heterogeneity based arbitrament(IWHA)algorithm.In the proposed architecture,the random distribution function and information weight are employed to achieve the optimal selection of executors in the process of RD-DS,which avoids the case that some executors fail to be selected due to their stability difference in the conventional DHR architecture.Then,through introducing the heterogeneity to restrict the information weights in the procedure of the IWHA,the proposed architecture solves the common mode escape issue caused by the existence of multiple identical error output results of similar vulnerabilities.The experimental results characterize that the proposed architecture outperforms in heterogeneity,scheduling times,security,and stability over the conventional DHR architecture under the same conditions.
文摘In this study, we investigated the performance improvement caused by the addition of copper(Cu)nanoparticles to high-density polyethylene(HDPE) matrix material. Composite materials, with filler percentages of 0.0, 2.0, 4.0, 6.0, 8.0, and 10.0 wt% were synthesized through the material extrusion(MEX)3D printing technique. The synthesized nanocomposite filaments were utilized for the manufacturing of specimens suitable for the experimental procedure that followed. Hence, we were able to systematically investigate their tensile, flexural, impact, and microhardness properties through various mechanical tests that were conducted according to the corresponding standards. Broadband Dielectric Spectroscopy was used to investigate the electrical/dielectric properties of the composites. Moreover, by employing means of Raman spectroscopy and thermogravimetric analysis(TGA) we were also able to further investigate their vibrational, structural, and thermal properties. Concomitantly, means of scanning electron microscopy(SEM), as well as atomic force microscopy(AFM), were used for the examination of the morphological and structural characteristics of the synthesized specimens, while energy-dispersive Xray spectroscopy(EDS) was also performed in order to receive a more detailed picture on the structural characteristics of the various synthesized composites. The corresponding nanomaterials were also assessed for their antibacterial properties regarding Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli) with the assistance of a method named screening agar well diffusion. The results showed that the mechanical properties of HDPE benefited from the utilization of Cu as a filler, as they showed a notable improvement. The specimen of HDPE/Cu 4.0 wt% was the one that presented the highest levels of reinforcement in four out of the seven tested mechanical properties(for example, it exhibited a 36.7%improvement in the flexural strength, compared to the pure matrix). At the same time, the nanocomposites were efficient against the S. aureus bacterium and less efficient against the E. coli bacterium.The use of such multi-functional, robust nanocomposites in MEX 3D printing is positively impacting applications in various fields, most notably in the defense and security sectors. The latter becomes increasingly important if one takes into account that most firearms encompass various polymeric parts that require robustness and improved mechanical properties, while at the same time keeping the risk of spreading various infectious microorganisms at a bare minimum.
基金This work was supported by National Natural Science Foundation of China(No.61971026)the Fundamental Research Funds for the Central Universities(No.FRF-TP-18-008A3).
文摘In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach.
基金supported by Guangxi Vocational Education Teaching Reform Research Project(GXGZJG2020B149),J.G.(Juan Guo).
文摘With the rapid development of mobile communication technology,the application of internet of vehicles(IoV)services,such as for information services,driving safety,and traffic efficiency,is growing constantly.For businesses with low transmission delay,high data processing capacity and large storage capacity,by deploying edge computing in the IoV,data processing,encryption and decision-making can be completed at the local end,thus providing real-time and highly reliable communication capability.The roadside unit(RSU),as an important part of edge computing in the IoV,fulfils an important data forwarding function and provides an interactive communication channel for vehicles and server providers.Additional computing resources can be configured to accommodate the computing requirements of users.In this study,a virtual traffic defense strategy based on a differential game is proposed to solve the security problem of user-sensitive information leakage when an RSU is attacked.An incentive mechanism encourages service vehicles within the hot range to send virtual traffic to another RSU.By attracting the attention of attackers,it covers the target RSU and protects the system from attack.Simulation results show that the scheme provides the optimal strategy for intelligent vehicles to transmit virtual data,and ensures the maximization of users’interests.
文摘Networks have become an integral part of today’s world. The ease of deployment, low-cost and high data rates have contributed significantly to their popularity. There are many protocols that are tailored to ease the process of establishing these networks. Nevertheless, security-wise precautions were not taken in some of them. In this paper, we expose some of the vulnerability that exists in a commonly and widely used network protocol, the Address Resolution Protocol (ARP) protocol. Effectively, we will implement a user friendly and an easy-to-use tool that exploits the weaknesses of this protocol to deceive a victim’s machine and a router through creating a sort of Man-in-the-Middle (MITM) attack. In MITM, all of the data going out or to the victim machine will pass first through the attacker’s machine. This enables the attacker to inspect victim’s data packets, extract valuable data (like passwords) that belong to the victim and manipulate these data packets. We suggest and implement a defense mechanism and tool that counters this attack, warns the user, and exposes some information about the attacker to isolate him. GNU/Linux is chosen as an operating system to implement both the attack and the defense tools. The results show the success of the defense mechanism in detecting the ARP related attacks in a very simple and efficient way.