The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messa...The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messages, eavesdropping, network intrusion and malicious forwarding. Conventional cryptography-based security may consume significant overhead because of low-power devices, so current research shifts to the wireless physical layer for security enhancement. This paper is mainly focused on security issues and solutions for wireless communications at the physical layer. It first describes the RSSI-based and channel based wireless authentication methods respectively, and presents an overview of various secrecy capacity analyses of fading channel, MIMO channel and cooperative transmission, and then examines different misbehavior detection methods. Finally it draws conclusions and introduces the direction of our future work.展开更多
The open and broadcast nature of wireless channels leads to the inherent security problem of information leakage in wireless communication.We can utilize endogenous security functions to resolve this problem.The funda...The open and broadcast nature of wireless channels leads to the inherent security problem of information leakage in wireless communication.We can utilize endogenous security functions to resolve this problem.The fundamental solution is channel-based mechanisms,like physical layer secret keys.Unfortunately,current investigations have not fully exploited the randomness of wireless channels,making secret key rates not high.Consequently,user data can be encrypted by reducing the data rate to match the secret key rate.Based on the analysis of the endogenous wireless security principle,we proposed that the channel-based endogenous secret key rate can nearly match the maximum data rate in the fast-fading environments.After that,we validated the proposition in an instantiation system with multiple phase shift keying(MPSK)inputs from the perspectives of both theoretical analysis and simulation experiments.The results indicate that it is possible to accomplish the onetime pad without decreasing the data rate via channelbased endogenous keys.Besides,we can realize highspeed endogenously secure transmission by introducing independent channels in the domains of frequency,space,or time.The conclusions derived provide a new idea for wireless security and promote the application of the endogenous security theory.展开更多
Convergence and collaboration of heterogeneous networks in the next generation public mobile networks will be a subject of universal significance. Convergence of heterogeneous networks, as an effective approach to imp...Convergence and collaboration of heterogeneous networks in the next generation public mobile networks will be a subject of universal significance. Convergence of heterogeneous networks, as an effective approach to improve the coverage and capacity of public mobile network, to enable communication services, to provide Internet access and to enable mobile computing from everywhere, has drawn widespread attention for its good prospects in application. Construction of security system for wireless heterogeneous networks and development of new security models, key security techniques and approaches are critical and mandatory in heterogeneous networks development. Key technology of wireless heterogeneous networks security covers security routing protocol, access authentication, intrusion detection system, cooperative communication between nodes, etc.展开更多
his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issu...his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issue comprises four papers on recent advances in physical layer security forwireless networks. The second Part comprises another four papers on quantum com- munications.展开更多
Energy conservation has become a significant consideration in wireless sensor networks(WSN).In the sensor network,the sensor nodes have internal batteries,and as a result,they expire after a certain period.As a result,...Energy conservation has become a significant consideration in wireless sensor networks(WSN).In the sensor network,the sensor nodes have internal batteries,and as a result,they expire after a certain period.As a result,expanding the life duration of sensing devices by improving data depletion in an effective and sustainable energy-efficient way remains a challenge.Also,the clustering strategy employs to enhance or extend the life cycle of WSNs.We identify the supervisory head node(SH)or cluster head(CH)in every grouping considered the feasible strategy for power-saving route discovery in the clustering model,which diminishes the communication overhead in the WSN.However,the critical issue was determining the best SH for ensuring timely communication services.Our secure and energy concise route revamp technology(SECRET)protocol involves selecting an energy-concise cluster head(ECH)and route revamping to optimize navigation.The sensors transmit information over the ECH,which delivers the information to the base station via the determined optimal path using our strategy for effective data transmission.We modeled our methods to accom-plish power-efficient multi-hop routing.Furthermore,protected navigation helps to preserve energy when routing.The suggested solution improves energy savings,packet delivery ratio(PDR),route latency(RL),network lifetime(NL),and scalability.展开更多
The performance of Rayleigh fading channels is substantially impacted by the impacts of relays, antennas, and the number of branches. Opportunistic relaying is a potent technique for enhancing the effects of the afore...The performance of Rayleigh fading channels is substantially impacted by the impacts of relays, antennas, and the number of branches. Opportunistic relaying is a potent technique for enhancing the effects of the aforementioned factors while enhancing the performance of fading channels. Due to these issues, a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is taken into consideration in this study. So the investigation of a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is the focus of this paper. The primary goals of this study are to maximize security in wireless multicasting while minimizing security loss caused by the effects of relays, branches at destinations and wiretappers, as well as multicast users and wiretappers through opportunistic relaying. To comprehend the insight effects of prior parameters, the closed form analytical expressions are constructed for the probability of non-zero secrecy multicast capacity (PNSMC), ergodic secrecy multicast capacity (ESMC), and secure outage probability for multicasting (SOPM). The findings demonstrate that opportunistic relaying is a successful method for reducing the loss of security in multicasting.展开更多
Wireless charging has played a crucial role in electric vehicle charging market presently.As electric vehicles will be important nodes access to the smart grid in the future,the security flow of energy and information...Wireless charging has played a crucial role in electric vehicle charging market presently.As electric vehicles will be important nodes access to the smart grid in the future,the security flow of energy and information between wireless charging infrastructure and the smart grid will directly affect the security of the smart grid.A novel secure wireless transfer method for energy and information transfer simultaneously has been represented in this paper by designing a reasonable dual-band coil for simultaneous transmission of energy and information,using improved chaotic modulation and a three times handshake protocol for encrypting energy and information between wireless charging infrastructure and the smart grid.Both the simulation and experiments show that the security of energy transmission can be effectively improved by this structure,in the premise of ensuring the power and efficiency of wireless energy transmission.展开更多
Objective Aiming at lots of vulnerabilities in the Wired Equivalent Privacy (WEP) which threats the authentication and confidentiality in wireless communication, a new kind of mutual authentication and privacy mechan...Objective Aiming at lots of vulnerabilities in the Wired Equivalent Privacy (WEP) which threats the authentication and confidentiality in wireless communication, a new kind of mutual authentication and privacy mechanism named MWEP(Modified WEP) is proposed. Methods MWEP is based on pseudo random number generator (PRNG) and asymmetric cryptograph approach, it generates a unique session key like “One Time Password” for each data frame transmission between any two mobile stations. Results Using this session key to encrypt the transmission data, not only can it avoid replay attack, but also provide a good secure virtual channel for the sender and receiver. MWEP can be incorporated into IEEE 802.11. Conclusion It shows that the proposed mechanism is effective and practical after comparison with WEP and simulation.展开更多
The effects of scatterers, fluctuation parameter and propagation clusters significantly affect the performance of κ-μ shadowed fading channel. On the other hand, opportunistic relaying is an efficient technique to i...The effects of scatterers, fluctuation parameter and propagation clusters significantly affect the performance of κ-μ shadowed fading channel. On the other hand, opportunistic relaying is an efficient technique to improve the performance of fading channels reducing the effects of aforementioned parameters. Motivated by these issues, in this paper, a secure wireless multicasting scenario through κ-μ shadowed fading channel is considered in the presence of multiple eavesdroppers with opportunistic relaying. The main purpose of this paper is to ensure the security level in wireless multicasting compensating the loss of security due to the effects of power ratio between dominant and scattered waves, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers, by opportunistic relaying technique. The closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to understand the insight of the effects of above parameters. The results show that the loss of security in multicasting through κ-μ shadowed fading channel can be significantly enhanced using opportunistic relaying technique by compensating the effects of scatterers, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers.展开更多
The protection of ad-hoc networks is becoming a severe concern because of the absence of a central authority.The intensity of the harm largely depends on the attacker’s intentions during hostile assaults.As a result,...The protection of ad-hoc networks is becoming a severe concern because of the absence of a central authority.The intensity of the harm largely depends on the attacker’s intentions during hostile assaults.As a result,the loss of Information,power,or capacity may occur.The authors propose an Enhanced Trust-Based Secure Route Protocol(ETBSRP)using features extraction.First,the primary and secondary trust characteristics are retrieved and achieved routing using a calculation.The complete trust characteristic obtains by integrating all logical and physical trust from every node.To assure intermediate node trust-worthiness,we designed an ETBSRP,and it calculates and certifies each mobile node's reputation and sends packets based on that trust.Connection,honesty,power,and capacity are the four trust characteristics used to calculate node repu-tation.We categorize Nodes as trustworthy or untrustworthy according to their reputation values.Fool nodes are detached from the routing pathway and cannot communicate.Then,we use the cryptographic functions to ensure more secure data transmission.Finally,we eliminate the untrustworthy nodes from the routing process,and the datagram from the origin are securely sent to the target,increas-ing throughput by 93.4%and minimizing delay.展开更多
An ad-hoc sensor network(ASN)is a group of sensing nodes that transmit data over a wireless link to a target node,direct or indirect,through a series of nodes.ASN becomes a high-risk group for several security exploit...An ad-hoc sensor network(ASN)is a group of sensing nodes that transmit data over a wireless link to a target node,direct or indirect,through a series of nodes.ASN becomes a high-risk group for several security exploits due to the sensor node’s limited resources.Internal threats are more challenging to protect against than external attacks.The nodes are grouped,and calculate each node’s trust level.The trust level is the result of combining internal and external trust degrees.Cluster heads(CH)are chosen based on the anticipated trust levels.The communications are then digitally signed by the source,encoded using a key pair given by a trustworthy CH,decoded by the recipient,and supervised by verifications.It authenticates the technique by identifying the presence of both the transmitter and the recipient.Our approach looks for a trustworthy neighboring node that meets the trust threshold condition to authenticate the key produced.The companion node reaffirms the node’s reliability by getting the public-key certification.The seeking sensor node and the certification issuer node must have a close and trusting relationship.The results of the proposed hybrid authentication using a node trustworthy(HANT)system are modeled and tested,and the suggested approach outperforms conventional trust-based approaches in throughput,latency,lifetime,and vulnerability methods.展开更多
Clustering is the most significant task characterized in Wireless Sensor Networks (WSN) by data aggregation through each Cluster Head (CH). This leads to the reduction in the traffic cost. Due to the deployment of the...Clustering is the most significant task characterized in Wireless Sensor Networks (WSN) by data aggregation through each Cluster Head (CH). This leads to the reduction in the traffic cost. Due to the deployment of the WSN in the remote and hostile environments for the transmission of the sensitive information, the sensor nodes are more prone to the false data injection attacks. To overcome these existing issues and enhance the network security, this paper proposes a Secure Area based Clustering approach for data aggregation using Traffic Analysis (SAC-TA) in WSN. Here, the sensor network is clustered into small clusters, such that each cluster has a CH to manage and gather the information from the normal sensor nodes. The CH is selected based on the predefined time slot, cluster center, and highest residual energy. The gathered data are validated based on the traffic analysis and One-time Key Generation procedures to identify the malicious nodes on the route. It helps to provide a secure data gathering process with improved energy efficiency. The performance of the proposed approach is compared with the existing Secure Data Aggregation Technique (SDAT). The proposed SAC-TA yields lower average energy consumption rate, lower end-to-end delay, higher average residual energy, higher data aggregation accuracy and false data detection rate than the existing technique.展开更多
A scheme of rogue access point(Rogue AP)detection based on AP's localization is proposed.Global position system(GPS)information and received signal strength(RSS)information are used to get the location of AP in a ...A scheme of rogue access point(Rogue AP)detection based on AP's localization is proposed.Global position system(GPS)information and received signal strength(RSS)information are used to get the location of AP in a smartphone,which is compared with the database located in a remote server.The proposed scheme can detect not only fake access point(Fake AP)but also Evil Twin AP.It can be a user-oriented solution to detecting Rogue AP threats,and users can use it flexibly.展开更多
Radio frequency fingerprint identification(RFFI)shows great potential as a means for authenticating wireless devices.As RFFI can be addressed as a classification problem,deep learning techniques are widely utilized in...Radio frequency fingerprint identification(RFFI)shows great potential as a means for authenticating wireless devices.As RFFI can be addressed as a classification problem,deep learning techniques are widely utilized in modern RFFI systems for their outstanding performance.RFFI is suitable for securing the legacy existing Internet of Things(IoT)networks since it does not require any modifications to the existing end-node hardware and communication protocols.However,most deep learning-based RFFI systems require the collection of a great number of labelled signals for training,which is time-consuming and not ideal,especially for the Io T end nodes that are already deployed and configured with long transmission intervals.Moreover,the long time required to train a neural network from scratch also limits rapid deployment on legacy Io T networks.To address the above issues,two transferable RFFI protocols are proposed in this paper leveraging the concept of transfer learning.More specifically,they rely on fine-tuning and distance metric learning,respectively,and only require only a small amount of signals from the legacy IoT network.As the dataset used for transfer is small,we propose to apply augmentation in the transfer process to generate more training signals to improve performance.A Lo Ra-RFFI testbed consisting of 40 commercial-off-the-shelf(COTS)Lo Ra IoT devices and a software-defined radio(SDR)receiver is built to experimentally evaluate the proposed approaches.The experimental results demonstrate that both the fine-tuning and distance metric learning-based RFFI approaches can be rapidly transferred to another Io T network with less than ten signals from each Lo Ra device.The classification accuracy is over 90%,and the augmentation technique can improve the accuracy by up to 20%.展开更多
This paper reports a photonics-assisted millimeter-wave (mm-wave) joint radar jamming and secure communication system constructed through a photonic upconversion technique. In the experiments, a 30 GHz constant envelo...This paper reports a photonics-assisted millimeter-wave (mm-wave) joint radar jamming and secure communication system constructed through a photonic upconversion technique. In the experiments, a 30 GHz constant envelope linear frequency-modulated orthogonal frequency division modulation(CE-LFM-OFDM) signal with an instantaneous bandwidth of 1 GHz is synthesized by encoding 1 GBaud encrypted 16-quadrature amplitude modulation(16-QAM) OFDM signal. The velocity deception jamming is achieved with a spurious suppression ratio over 30 dB. Furthermore, we efficiently execute range deception jamming with a time shift of 10 ns. Simultaneously, the encrypted 16-QAM OFDM signal is successfully transmitted over a 1.2 m wireless link, with a data rate of 4 Gbit/s.展开更多
Wireless transmission is becoming increasing ubiquitous, but there is a big black hole in the security of this kind of network. Although IEEE 802.11 provides an optional Wired Equivalent Privacy (WEP) to implement the...Wireless transmission is becoming increasing ubiquitous, but there is a big black hole in the security of this kind of network. Although IEEE 802.11 provides an optional Wired Equivalent Privacy (WEP) to implement the authentication and confidentiality, it leaves a lot of vulnerabilities and threats. This paper proposes a protocol called SPRNG for wireless data-link layer security. SPRNG is based on the sender and receiver who generate in a synchronized way a pseudo-random number sequence. In each transmission, the sender and receiver use a pair of random numbers, one for data frame authentication, and the other for encryption key. The random numbers are used as 'one-time passwords' for sender authentication and as fresh encryption keys for each frame. SPRNG is designed to be compatible with the existing 802.11 products. Like WEP, the current 802.11 security protocol, SPRNG uses a symmetric key as its seed. SPRNG has already been simulated and tested in experiment, it shows that SPRNG has stronger Security than WEP because it reveals little information for attackers. The key problem of SPRNG, synchronization loss problem, is also presented. Though motivated by wireless security, SPRNG is generic for many other applications, especially in the point to point communication.展开更多
The Ultra-WideBand(UWB) technique, which offers good energy efficiency, flexible data rate, and high ranging accuracy, has recently been recognized as a revived wireless technology for short distance communication.Thi...The Ultra-WideBand(UWB) technique, which offers good energy efficiency, flexible data rate, and high ranging accuracy, has recently been recognized as a revived wireless technology for short distance communication.This paper presents a brief overview of two UWB techniques, covering Impulse-Radio UWB(IR-UWB) and FrequencyModulation UWB(FM-UWB) methods. The link margin enhancement technique, Very-WideBand(VWB), and power consumption reducing technique, chirp UWB, are also introduced. Then, several potential applications of IR-UWB with transceiver architectures are addressed, including high data rate proximity communication and secure wireless connectivity. With fine-ranging and energy-efficient communication features, the UWB wireless technology is highly promising for secure mobile Internet of Things(IoT) applications.展开更多
Designing an anonymous user authentication scheme in global mobility networks is a non-trivial task because wireless networks are susceptible to attacks and mobile devices powered by batteries have limited communicati...Designing an anonymous user authentication scheme in global mobility networks is a non-trivial task because wireless networks are susceptible to attacks and mobile devices powered by batteries have limited communication, processing and storage capabilities. In this paper, we present ~ generic construction that converts any existing secure password authen- tication scheme based on a smart card into an anonymous authentication scheme for roaming services. The security proof of our construction can be derived from the underlying password authentication scheme employing the same assumptions. Compared with the original password authentication scheme, the transformed scheme does not sacrifice the authentication efficiency, and additionally, an agreed session key can be securely established between an anonymous mobile user and the foreign agent in charge of the network being visited. Furthermore, we present an instantiation of the proposed generic construction. The performance analysis shows that compared with other related anonymous authentication schemes, our instantiation is more efficient.展开更多
基金supported in part by State Key Program of National Nature Science Foundation of China under Grant No.60932003National High Technical Research and Development Program of China (863 Program ) under Grant No.2007AA01Z452
文摘The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messages, eavesdropping, network intrusion and malicious forwarding. Conventional cryptography-based security may consume significant overhead because of low-power devices, so current research shifts to the wireless physical layer for security enhancement. This paper is mainly focused on security issues and solutions for wireless communications at the physical layer. It first describes the RSSI-based and channel based wireless authentication methods respectively, and presents an overview of various secrecy capacity analyses of fading channel, MIMO channel and cooperative transmission, and then examines different misbehavior detection methods. Finally it draws conclusions and introduces the direction of our future work.
基金funded by the National Key R&D Program of China under Grant 2017YFB0801903the National Natural Science Foundation of China under Grant 61871404,61701538,61521003Doctoral Fund of Ministry of Education of China under Grant 2019M663994。
文摘The open and broadcast nature of wireless channels leads to the inherent security problem of information leakage in wireless communication.We can utilize endogenous security functions to resolve this problem.The fundamental solution is channel-based mechanisms,like physical layer secret keys.Unfortunately,current investigations have not fully exploited the randomness of wireless channels,making secret key rates not high.Consequently,user data can be encrypted by reducing the data rate to match the secret key rate.Based on the analysis of the endogenous wireless security principle,we proposed that the channel-based endogenous secret key rate can nearly match the maximum data rate in the fast-fading environments.After that,we validated the proposition in an instantiation system with multiple phase shift keying(MPSK)inputs from the perspectives of both theoretical analysis and simulation experiments.The results indicate that it is possible to accomplish the onetime pad without decreasing the data rate via channelbased endogenous keys.Besides,we can realize highspeed endogenously secure transmission by introducing independent channels in the domains of frequency,space,or time.The conclusions derived provide a new idea for wireless security and promote the application of the endogenous security theory.
基金the Jiangsu Natural Science Foundation under Grant No.BK2007236Jiangsu Six-Categories Top Talent Fundunder Grand No.SJ207001
文摘Convergence and collaboration of heterogeneous networks in the next generation public mobile networks will be a subject of universal significance. Convergence of heterogeneous networks, as an effective approach to improve the coverage and capacity of public mobile network, to enable communication services, to provide Internet access and to enable mobile computing from everywhere, has drawn widespread attention for its good prospects in application. Construction of security system for wireless heterogeneous networks and development of new security models, key security techniques and approaches are critical and mandatory in heterogeneous networks development. Key technology of wireless heterogeneous networks security covers security routing protocol, access authentication, intrusion detection system, cooperative communication between nodes, etc.
文摘his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issue comprises four papers on recent advances in physical layer security forwireless networks. The second Part comprises another four papers on quantum com- munications.
文摘Energy conservation has become a significant consideration in wireless sensor networks(WSN).In the sensor network,the sensor nodes have internal batteries,and as a result,they expire after a certain period.As a result,expanding the life duration of sensing devices by improving data depletion in an effective and sustainable energy-efficient way remains a challenge.Also,the clustering strategy employs to enhance or extend the life cycle of WSNs.We identify the supervisory head node(SH)or cluster head(CH)in every grouping considered the feasible strategy for power-saving route discovery in the clustering model,which diminishes the communication overhead in the WSN.However,the critical issue was determining the best SH for ensuring timely communication services.Our secure and energy concise route revamp technology(SECRET)protocol involves selecting an energy-concise cluster head(ECH)and route revamping to optimize navigation.The sensors transmit information over the ECH,which delivers the information to the base station via the determined optimal path using our strategy for effective data transmission.We modeled our methods to accom-plish power-efficient multi-hop routing.Furthermore,protected navigation helps to preserve energy when routing.The suggested solution improves energy savings,packet delivery ratio(PDR),route latency(RL),network lifetime(NL),and scalability.
文摘The performance of Rayleigh fading channels is substantially impacted by the impacts of relays, antennas, and the number of branches. Opportunistic relaying is a potent technique for enhancing the effects of the aforementioned factors while enhancing the performance of fading channels. Due to these issues, a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is taken into consideration in this study. So the investigation of a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is the focus of this paper. The primary goals of this study are to maximize security in wireless multicasting while minimizing security loss caused by the effects of relays, branches at destinations and wiretappers, as well as multicast users and wiretappers through opportunistic relaying. To comprehend the insight effects of prior parameters, the closed form analytical expressions are constructed for the probability of non-zero secrecy multicast capacity (PNSMC), ergodic secrecy multicast capacity (ESMC), and secure outage probability for multicasting (SOPM). The findings demonstrate that opportunistic relaying is a successful method for reducing the loss of security in multicasting.
基金This work is supported by International Science&Technology Cooperation Program of China under contract No.2016YFE0102200.
文摘Wireless charging has played a crucial role in electric vehicle charging market presently.As electric vehicles will be important nodes access to the smart grid in the future,the security flow of energy and information between wireless charging infrastructure and the smart grid will directly affect the security of the smart grid.A novel secure wireless transfer method for energy and information transfer simultaneously has been represented in this paper by designing a reasonable dual-band coil for simultaneous transmission of energy and information,using improved chaotic modulation and a three times handshake protocol for encrypting energy and information between wireless charging infrastructure and the smart grid.Both the simulation and experiments show that the security of energy transmission can be effectively improved by this structure,in the premise of ensuring the power and efficiency of wireless energy transmission.
基金ThisprojectwassupportedbytheFoundationofNational863ClimbingProject (No .2 001BA101A01).HarvardUniversityDivisionofEngineeringandAppliedScience+1 种基金Cambridge MA0 2 1 38.
文摘Objective Aiming at lots of vulnerabilities in the Wired Equivalent Privacy (WEP) which threats the authentication and confidentiality in wireless communication, a new kind of mutual authentication and privacy mechanism named MWEP(Modified WEP) is proposed. Methods MWEP is based on pseudo random number generator (PRNG) and asymmetric cryptograph approach, it generates a unique session key like “One Time Password” for each data frame transmission between any two mobile stations. Results Using this session key to encrypt the transmission data, not only can it avoid replay attack, but also provide a good secure virtual channel for the sender and receiver. MWEP can be incorporated into IEEE 802.11. Conclusion It shows that the proposed mechanism is effective and practical after comparison with WEP and simulation.
文摘The effects of scatterers, fluctuation parameter and propagation clusters significantly affect the performance of κ-μ shadowed fading channel. On the other hand, opportunistic relaying is an efficient technique to improve the performance of fading channels reducing the effects of aforementioned parameters. Motivated by these issues, in this paper, a secure wireless multicasting scenario through κ-μ shadowed fading channel is considered in the presence of multiple eavesdroppers with opportunistic relaying. The main purpose of this paper is to ensure the security level in wireless multicasting compensating the loss of security due to the effects of power ratio between dominant and scattered waves, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers, by opportunistic relaying technique. The closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to understand the insight of the effects of above parameters. The results show that the loss of security in multicasting through κ-μ shadowed fading channel can be significantly enhanced using opportunistic relaying technique by compensating the effects of scatterers, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers.
文摘The protection of ad-hoc networks is becoming a severe concern because of the absence of a central authority.The intensity of the harm largely depends on the attacker’s intentions during hostile assaults.As a result,the loss of Information,power,or capacity may occur.The authors propose an Enhanced Trust-Based Secure Route Protocol(ETBSRP)using features extraction.First,the primary and secondary trust characteristics are retrieved and achieved routing using a calculation.The complete trust characteristic obtains by integrating all logical and physical trust from every node.To assure intermediate node trust-worthiness,we designed an ETBSRP,and it calculates and certifies each mobile node's reputation and sends packets based on that trust.Connection,honesty,power,and capacity are the four trust characteristics used to calculate node repu-tation.We categorize Nodes as trustworthy or untrustworthy according to their reputation values.Fool nodes are detached from the routing pathway and cannot communicate.Then,we use the cryptographic functions to ensure more secure data transmission.Finally,we eliminate the untrustworthy nodes from the routing process,and the datagram from the origin are securely sent to the target,increas-ing throughput by 93.4%and minimizing delay.
文摘An ad-hoc sensor network(ASN)is a group of sensing nodes that transmit data over a wireless link to a target node,direct or indirect,through a series of nodes.ASN becomes a high-risk group for several security exploits due to the sensor node’s limited resources.Internal threats are more challenging to protect against than external attacks.The nodes are grouped,and calculate each node’s trust level.The trust level is the result of combining internal and external trust degrees.Cluster heads(CH)are chosen based on the anticipated trust levels.The communications are then digitally signed by the source,encoded using a key pair given by a trustworthy CH,decoded by the recipient,and supervised by verifications.It authenticates the technique by identifying the presence of both the transmitter and the recipient.Our approach looks for a trustworthy neighboring node that meets the trust threshold condition to authenticate the key produced.The companion node reaffirms the node’s reliability by getting the public-key certification.The seeking sensor node and the certification issuer node must have a close and trusting relationship.The results of the proposed hybrid authentication using a node trustworthy(HANT)system are modeled and tested,and the suggested approach outperforms conventional trust-based approaches in throughput,latency,lifetime,and vulnerability methods.
文摘Clustering is the most significant task characterized in Wireless Sensor Networks (WSN) by data aggregation through each Cluster Head (CH). This leads to the reduction in the traffic cost. Due to the deployment of the WSN in the remote and hostile environments for the transmission of the sensitive information, the sensor nodes are more prone to the false data injection attacks. To overcome these existing issues and enhance the network security, this paper proposes a Secure Area based Clustering approach for data aggregation using Traffic Analysis (SAC-TA) in WSN. Here, the sensor network is clustered into small clusters, such that each cluster has a CH to manage and gather the information from the normal sensor nodes. The CH is selected based on the predefined time slot, cluster center, and highest residual energy. The gathered data are validated based on the traffic analysis and One-time Key Generation procedures to identify the malicious nodes on the route. It helps to provide a secure data gathering process with improved energy efficiency. The performance of the proposed approach is compared with the existing Secure Data Aggregation Technique (SDAT). The proposed SAC-TA yields lower average energy consumption rate, lower end-to-end delay, higher average residual energy, higher data aggregation accuracy and false data detection rate than the existing technique.
基金The KCC(Korea Communications Commission),Korea,under the R&D program supervised by the KCA(Korea Communications Agency)(KCA-2012-08-911-05-001)
文摘A scheme of rogue access point(Rogue AP)detection based on AP's localization is proposed.Global position system(GPS)information and received signal strength(RSS)information are used to get the location of AP in a smartphone,which is compared with the database located in a remote server.The proposed scheme can detect not only fake access point(Fake AP)but also Evil Twin AP.It can be a user-oriented solution to detecting Rogue AP threats,and users can use it flexibly.
基金in part supported by UK Engineering and Physical Sciences Research Council under grant ID EP/V027697/1in part by the National Key Research and Development Program of China under grant ID 2020YFE0200600
文摘Radio frequency fingerprint identification(RFFI)shows great potential as a means for authenticating wireless devices.As RFFI can be addressed as a classification problem,deep learning techniques are widely utilized in modern RFFI systems for their outstanding performance.RFFI is suitable for securing the legacy existing Internet of Things(IoT)networks since it does not require any modifications to the existing end-node hardware and communication protocols.However,most deep learning-based RFFI systems require the collection of a great number of labelled signals for training,which is time-consuming and not ideal,especially for the Io T end nodes that are already deployed and configured with long transmission intervals.Moreover,the long time required to train a neural network from scratch also limits rapid deployment on legacy Io T networks.To address the above issues,two transferable RFFI protocols are proposed in this paper leveraging the concept of transfer learning.More specifically,they rely on fine-tuning and distance metric learning,respectively,and only require only a small amount of signals from the legacy IoT network.As the dataset used for transfer is small,we propose to apply augmentation in the transfer process to generate more training signals to improve performance.A Lo Ra-RFFI testbed consisting of 40 commercial-off-the-shelf(COTS)Lo Ra IoT devices and a software-defined radio(SDR)receiver is built to experimentally evaluate the proposed approaches.The experimental results demonstrate that both the fine-tuning and distance metric learning-based RFFI approaches can be rapidly transferred to another Io T network with less than ten signals from each Lo Ra device.The classification accuracy is over 90%,and the augmentation technique can improve the accuracy by up to 20%.
基金supported by the National Key Research and Development Program of China (No.2022YFB2804502)the National Natural Science Foundation of China (No.62175143)。
文摘This paper reports a photonics-assisted millimeter-wave (mm-wave) joint radar jamming and secure communication system constructed through a photonic upconversion technique. In the experiments, a 30 GHz constant envelope linear frequency-modulated orthogonal frequency division modulation(CE-LFM-OFDM) signal with an instantaneous bandwidth of 1 GHz is synthesized by encoding 1 GBaud encrypted 16-quadrature amplitude modulation(16-QAM) OFDM signal. The velocity deception jamming is achieved with a spurious suppression ratio over 30 dB. Furthermore, we efficiently execute range deception jamming with a time shift of 10 ns. Simultaneously, the encrypted 16-QAM OFDM signal is successfully transmitted over a 1.2 m wireless link, with a data rate of 4 Gbit/s.
文摘Wireless transmission is becoming increasing ubiquitous, but there is a big black hole in the security of this kind of network. Although IEEE 802.11 provides an optional Wired Equivalent Privacy (WEP) to implement the authentication and confidentiality, it leaves a lot of vulnerabilities and threats. This paper proposes a protocol called SPRNG for wireless data-link layer security. SPRNG is based on the sender and receiver who generate in a synchronized way a pseudo-random number sequence. In each transmission, the sender and receiver use a pair of random numbers, one for data frame authentication, and the other for encryption key. The random numbers are used as 'one-time passwords' for sender authentication and as fresh encryption keys for each frame. SPRNG is designed to be compatible with the existing 802.11 products. Like WEP, the current 802.11 security protocol, SPRNG uses a symmetric key as its seed. SPRNG has already been simulated and tested in experiment, it shows that SPRNG has stronger Security than WEP because it reveals little information for attackers. The key problem of SPRNG, synchronization loss problem, is also presented. Though motivated by wireless security, SPRNG is generic for many other applications, especially in the point to point communication.
基金supported in part by the National Natural Science Foundation of China (No. 61774092)。
文摘The Ultra-WideBand(UWB) technique, which offers good energy efficiency, flexible data rate, and high ranging accuracy, has recently been recognized as a revived wireless technology for short distance communication.This paper presents a brief overview of two UWB techniques, covering Impulse-Radio UWB(IR-UWB) and FrequencyModulation UWB(FM-UWB) methods. The link margin enhancement technique, Very-WideBand(VWB), and power consumption reducing technique, chirp UWB, are also introduced. Then, several potential applications of IR-UWB with transceiver architectures are addressed, including high data rate proximity communication and secure wireless connectivity. With fine-ranging and energy-efficient communication features, the UWB wireless technology is highly promising for secure mobile Internet of Things(IoT) applications.
基金supported by the National Basic Research 973 Program of China under Grant No.2013CB338003the National Natural Science Foundation of China under Grant Nos.61170279 and 61272479the Strategic Priority Research Program of Chinese Academy of Sciences under Grant Nos.XDA06010701 and XDA06010702
文摘Designing an anonymous user authentication scheme in global mobility networks is a non-trivial task because wireless networks are susceptible to attacks and mobile devices powered by batteries have limited communication, processing and storage capabilities. In this paper, we present ~ generic construction that converts any existing secure password authen- tication scheme based on a smart card into an anonymous authentication scheme for roaming services. The security proof of our construction can be derived from the underlying password authentication scheme employing the same assumptions. Compared with the original password authentication scheme, the transformed scheme does not sacrifice the authentication efficiency, and additionally, an agreed session key can be securely established between an anonymous mobile user and the foreign agent in charge of the network being visited. Furthermore, we present an instantiation of the proposed generic construction. The performance analysis shows that compared with other related anonymous authentication schemes, our instantiation is more efficient.