In recent scenario of Wireless Sensor Networks(WSNs),there are many application developed for handling sensitive and private data such as military information,surveillance data,tracking,etc.Hence,the sensor nodes of W...In recent scenario of Wireless Sensor Networks(WSNs),there are many application developed for handling sensitive and private data such as military information,surveillance data,tracking,etc.Hence,the sensor nodes of WSNs are distributed in an intimidating region,which is non-rigid to attacks.The recent research domains of WSN deal with models to handle the WSN communications against malicious attacks and threats.In traditional models,the solution has been made for defending the networks,only to specific attacks.However,in real-time applications,the kind of attack that is launched by the adversary is not known.Additionally,on developing a security mechanism for WSN,the resource constraints of sensor nodes are also to be considered.With that note,this paper presents an Enhanced Security Model with Improved Defensive Routing Mechanism(IDRM)for defending the sensor network from various attacks.Moreover,for efficient model design,the work includes the part of feature evaluation of some general attacks of WSNs.The IDRM also includes determination of optimal secure paths and Node security for secure routing operations.The performance of the proposed model is evaluated with respect to several factors;it is found that the model has achieved better security levels and is efficient than other existing models in WSN communications.It is proven that the proposed IDRM produces 74%of PDR in average and a minimized packet drop of 38%when comparing with the existing works.展开更多
Recently,a trust system was introduced to enhance security and cooperation between nodes in wireless sensor networks(WSN).In routing,the trust system includes or avoids nodes related to the estimated trust values in t...Recently,a trust system was introduced to enhance security and cooperation between nodes in wireless sensor networks(WSN).In routing,the trust system includes or avoids nodes related to the estimated trust values in the routing function.This article introduces Enhanced Metaheuristics with Trust Aware Secure Route Selection Protocol(EMTA-SRSP)for WSN.The presented EMTA-SRSP technique majorly involves the optimal selection of routes in WSN.To accomplish this,the EMTA-SRSP technique involves the design of an oppositional Aquila optimization algorithm to choose safe routes for data communication.For the clustering process,the nodes with maximum residual energy will be considered cluster heads(CHs).In addition,the OAOA technique gets executed to choose optimal routes based on objective functions with multiple parameters such as energy,distance,and trust degree.The experimental validation of the EMTA-SRSP technique is tested,and the results exhibited a better performance of the EMTA-SRSP technique over other approaches.展开更多
Energy conservation has become a significant consideration in wireless sensor networks(WSN).In the sensor network,the sensor nodes have internal batteries,and as a result,they expire after a certain period.As a result,...Energy conservation has become a significant consideration in wireless sensor networks(WSN).In the sensor network,the sensor nodes have internal batteries,and as a result,they expire after a certain period.As a result,expanding the life duration of sensing devices by improving data depletion in an effective and sustainable energy-efficient way remains a challenge.Also,the clustering strategy employs to enhance or extend the life cycle of WSNs.We identify the supervisory head node(SH)or cluster head(CH)in every grouping considered the feasible strategy for power-saving route discovery in the clustering model,which diminishes the communication overhead in the WSN.However,the critical issue was determining the best SH for ensuring timely communication services.Our secure and energy concise route revamp technology(SECRET)protocol involves selecting an energy-concise cluster head(ECH)and route revamping to optimize navigation.The sensors transmit information over the ECH,which delivers the information to the base station via the determined optimal path using our strategy for effective data transmission.We modeled our methods to accom-plish power-efficient multi-hop routing.Furthermore,protected navigation helps to preserve energy when routing.The suggested solution improves energy savings,packet delivery ratio(PDR),route latency(RL),network lifetime(NL),and scalability.展开更多
Underground mining is a hazardous industrial activity. In order to provide a safe working environment for miners, a Wireless Sensor Network (WSN) technology has been used for security monitoring. It can provide a wide...Underground mining is a hazardous industrial activity. In order to provide a safe working environment for miners, a Wireless Sensor Network (WSN) technology has been used for security monitoring. It can provide a wide range of surveillance with a relatively low cost. In this study, an Energy-Based Multipath Routing (EBMR) protocol is proposed, which considers residual energy capacity and link quality in choosing hops and routing paths. Hops and paths with a high residual energy capacity and link quality will have the best chance to be selected to transmit data packages. Since the EBMR stores several routes in the routing table, when the current path fails, another path will be chosen to fulfill the task immediately. In this way, EBMR improves reliability and decrease time latency. Compared to AOMDV and REAR, EBMR decreases time latency by 51% and 12%.展开更多
The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how...The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how to elect a secure cluster head and balance the network load becomes an enormous challenge.In this paper,a Trust Management-based and Low Energy Adaptive Clustering Hierarchy protocol(LEACH-TM)is proposed.In LEACH-TM,by using the number of dynamic decision cluster head nodes,residual energy and density of neighbor nodes,the size of the cluster can be better constrained to improve energy efficiency,and avoid excessive energy consumption of a node.Simultaneously,the trust management scheme is introduced into LEACH-TM to defend against internal attacks.The simulation results show that,compared with LEACH-SWDN protocol and LEACH protocol,LEACH-TM outperforms in prolonging the network lifetime and balancing the energy consumption,and can effectively mitigate the influence of malicious nodes on cluster head selection,which can greatiy guarantee the security of the overall network.展开更多
Wireless sensor networks (WSNs) consist of a large number of sensor nodes that monitor the environment and a few base stations that collect the sensor readings. Individual sensor nodes are subject to compromised secur...Wireless sensor networks (WSNs) consist of a large number of sensor nodes that monitor the environment and a few base stations that collect the sensor readings. Individual sensor nodes are subject to compromised security because they may be deployed in hostile environments and each sensor node communicates wirelessly. An adversary can inject false reports into the networks via compromised nodes. Furthermore, an adversary can create a wormhole by directly linking two compromised nodes or using out-of-band channels. If these two kinds of attacks occur simultaneously in a network, existing methods cannot defend against them adequately. We thus propose a secure routing method for detecting false report injections and wormhole attacks in wireless sensor networks. The proposed method uses ACK messages for detecting wormholes and is based on a statistical en-route filtering (SEF) scheme for detecting false reports. Simulation results show that the proposed method reduces energy consumption by up to 20% and provide greater network security.展开更多
Nowadays,with the advancement of new technologies such as the Internet of Things,new applications and intelligent networks,the use of wireless sensor network increased considerably.They are prone to a variety of attac...Nowadays,with the advancement of new technologies such as the Internet of Things,new applications and intelligent networks,the use of wireless sensor network increased considerably.They are prone to a variety of attacks.Thus,network security is of utmost importance to researchers.In the past,methods such as cryptography,authentication and hash function were used to create security in this type of network.However,due to the limitations of this type of network,trust-based methods are used today.Finding a secure route for transferring data among available routes greatly increases security in this network.In this paper,we present aTrust-based Routing Optimization using Multi-Ant Colonies(MACRAT)scheme which is based on the improvement of the ant meta-heuristic algorithm and an improved method for trust assessment which is presented.The simulation results illustrate that MACRAT is more efficient than existing routing protocols.The results show that MACRAT improved by 10% in black hole detection compared to ESRT protocol and by 4% compared to M-CSO protocol,the packet loss rate in MACRAT improved by 30.14%compared to ESRT protocol and 6%compared to M-CSO protocol.展开更多
We analyze and summarize the literatures on secure routing protocols published since 2003.Firstly,threats and attacks on sensor network routing are sorted and summarized.Then the current secure routing protocols are a...We analyze and summarize the literatures on secure routing protocols published since 2003.Firstly,threats and attacks on sensor network routing are sorted and summarized.Then the current secure routing protocols are also classified.According to the taxonomy,some typical secure routing protocols are clarified particularly.Besides,the advantage and disadvantage of these secure routing protocols are compared and analyzed.Finally,we conclude this paper and prospect the future work.展开更多
Mobile wireless sensor network (MWSN) has the features of self-organization, multiple-hop and limited energy resources. It is vulnerable to a wide set of security attacks, including those targeting the routing protoco...Mobile wireless sensor network (MWSN) has the features of self-organization, multiple-hop and limited energy resources. It is vulnerable to a wide set of security attacks, including those targeting the routing protocol functionality. In this paper, the existing security problems and solutions in MWSN are summarized, and then a trust management system based on neighbor monitoring is proposed. In the trust management system, the trust value is calculated by the neighbor monitoring mechanism, and the direct trust value and the indirect trust value are combined to establish the distributed trust model to detect the malicious nodes. The consistency check algorithm is capable of defending against the attacks on the trust model. In addition, because of the limited energy of the sensor nodes, the energy-balanced algorithm is introduced to prolong the lifespan of MWSN. The residual energy and energy density are considered in the routing decision. Finally, the simulation experiments show that the proposed algorithm can detect the malicious nodes effectively and achieve the energy-balanced goal to prolong the lifespan of MWSN.展开更多
Cryptography and authentication are traditional approach for providing network security. However, they are not sufficient for solving the problems which malicious nodes compromise whole wireless sensor network leading...Cryptography and authentication are traditional approach for providing network security. However, they are not sufficient for solving the problems which malicious nodes compromise whole wireless sensor network leading to invalid data transmission and wasting resource by using vicious behaviors. This paper puts forward an extended hierarchical trusted architecture for wireless sensor network, and establishes trusted congregations by three-tier framework. The method combines statistics, economics with encrypt mechanism for developing two trusted models which evaluate cluster head nodes and common sensor nodes respectively. The models form logical trusted-link from command node to common sensor nodes and guarantees the network can run in secure and reliable circumstance.展开更多
An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster head...An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster heads and ordinary nodes act as those cluster sensors in all clusters. The structure of WSNs is a two-layer structure. The upper layer consists of all cluster heads and the lower layer consists of all ordinary sensors managed by their corresponding cluster heads. The cluster heads and the ordinary sensors establish their pairwise keys respectively through utilizing different methods. The arithmetic balances energy expense among all kinds of nodes, saves the node energy, and prolongs the life of wireless sensor networks. Additionally, Analysis demonstrates that the security of wireless sensor networks has been improved obviously even with some heterogeneous nodes.展开更多
In this paper, we present a Micro-payment based Isolation of Misbehavior(MIM) secure routing protocol. The protocol contains three parts: micro-payment scheme, routingdiscovery and malicious nodes detection The micro-...In this paper, we present a Micro-payment based Isolation of Misbehavior(MIM) secure routing protocol. The protocol contains three parts: micro-payment scheme, routingdiscovery and malicious nodes detection The micro-payment scheme proposed in MIM is the firstvirtual currency system that can be suit lor sensor network environment, Based on the micro-paymentscheme, we device an energy aware routing protocol, which forwards packets by auction. Furthermore,the base station can detect and isolate misbehave or non-cooptrare nodes according to the routinginformation.展开更多
Security is a vital parameter to conserve energy in wireless sensor networks(WSN).Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy dat...Security is a vital parameter to conserve energy in wireless sensor networks(WSN).Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy data transmission.But the available routing techniques do not involve security in the design of routing techniques.This study develops a novel statistical analysis with dingo optimizer enabled reliable routing scheme(SADO-RRS)for WSN.The proposed SADO-RRS technique aims to detect the existence of attacks and optimal routes in WSN.In addition,the presented SADORRS technique derives a new statistics based linear discriminant analysis(LDA)for attack detection,Moreover,a trust based dingo optimizer(TBDO)algorithm is applied for optimal route selection in the WSN and accomplishes secure data transmission in WSN.Besides,the TBDO algorithm involves the derivation of the fitness function involving different input variables of WSN.For demonstrating the enhanced outcomes of the SADO-RRS technique,a wide range of simulations was carried out and the outcomes demonstrated the enhanced outcomes of the SADO-RRS technique.展开更多
This paper proposed beta trust model based on energy load balancing combines the recent achievements of the trust models in distributed networks, together with the characteristics of wireless sensor networks. The inte...This paper proposed beta trust model based on energy load balancing combines the recent achievements of the trust models in distributed networks, together with the characteristics of wireless sensor networks. The inter-node trust relation is established after an overall evaluation of node trust value based on the monitor results of the node packets forwarding behavior conducted by inter-node collaboration. Due to the node energy limitation in wireless sensor networks, energy load balancing mechanism is applied to prolong the node survival time. And the redundant routing protocol involves the presented trust model to develop the novel trust routing protocol of beta trust model based on energy load balancing. Simulation performance demonstrates that the beta trust model based on energy load balancing outperforms current schemes in energy consumption.展开更多
One of the most effective measurements of intercommunication and collaboration in wireless sensor networks which leads to provide security is Trust Management. Most popular decision making systems used to collaborate ...One of the most effective measurements of intercommunication and collaboration in wireless sensor networks which leads to provide security is Trust Management. Most popular decision making systems used to collaborate with a stranger are tackled by two different existing trust management systems: one is a policy-based approach which verifies the decision built on logical properties and functionalities;the other approach is reputation-based approach which verifies the decision built on physical properties and functionalities of WSN. Proofless authorization, unavailability, vagueness and more complexity cause decreased detection rate and spoil the efficacy of the WSN in existing approaches. Some of the integrated approaches are utilized to improve the significance of the trust management strategies. In this paper, a Compact Trust Computation and Management (CTCM) approach is proposed to overcome the limitations of the existing approaches, also it provides a strong objective security with the calculability and the available security implications. Finally, the CTCM approach incorporates the optimum trust score for logical and physical investigation of the network resources. The simulation based experiment results show that the CTCM compact trust computation and management approach can provide an efficient defending mechanism against derailing attacks in WSN.展开更多
In this paper, we consider the scalable of wireless sensor networks with trust-based security. In our setting, the nodes have limited capability so that heavy computations are not suitable. So public key cryptographic...In this paper, we consider the scalable of wireless sensor networks with trust-based security. In our setting, the nodes have limited capability so that heavy computations are not suitable. So public key cryptographic algorithms are not allowed. We focus on the scalability of the network and proposed new testing algorithms and evaluation algorithms to test new nodes added, which give them reasonable values of trust. Based on these algorithms, we proposed new components for trust management system of wireless sensor networks.展开更多
针对无线传感器网络中存在的安全问题,提出了基于Q-Learning的分簇无线传感网信任管理机制(Q-learning based trust management mechanism for clustered wireless sensor networks,QLTMM-CWSN).该机制主要考虑通信信任、数据信任和能...针对无线传感器网络中存在的安全问题,提出了基于Q-Learning的分簇无线传感网信任管理机制(Q-learning based trust management mechanism for clustered wireless sensor networks,QLTMM-CWSN).该机制主要考虑通信信任、数据信任和能量信任3个方面.在网络运行过程中,基于节点的通信行为、数据分布和能量消耗,使用Q-Learning算法更新节点信任值,并选择簇内信任值最高的节点作为可信簇头节点.当簇中主簇头节点的信任值低于阈值时,可信簇头节点代替主簇头节点管理簇内成员节点,维护正常的数据传输.研究结果表明,QLTMM-CWSN机制能有效抵御通信攻击、伪造本地数据攻击、能量攻击和混合攻击.展开更多
文摘In recent scenario of Wireless Sensor Networks(WSNs),there are many application developed for handling sensitive and private data such as military information,surveillance data,tracking,etc.Hence,the sensor nodes of WSNs are distributed in an intimidating region,which is non-rigid to attacks.The recent research domains of WSN deal with models to handle the WSN communications against malicious attacks and threats.In traditional models,the solution has been made for defending the networks,only to specific attacks.However,in real-time applications,the kind of attack that is launched by the adversary is not known.Additionally,on developing a security mechanism for WSN,the resource constraints of sensor nodes are also to be considered.With that note,this paper presents an Enhanced Security Model with Improved Defensive Routing Mechanism(IDRM)for defending the sensor network from various attacks.Moreover,for efficient model design,the work includes the part of feature evaluation of some general attacks of WSNs.The IDRM also includes determination of optimal secure paths and Node security for secure routing operations.The performance of the proposed model is evaluated with respect to several factors;it is found that the model has achieved better security levels and is efficient than other existing models in WSN communications.It is proven that the proposed IDRM produces 74%of PDR in average and a minimized packet drop of 38%when comparing with the existing works.
基金This research was supported by the Universiti Sains Malaysia(USM)and the Ministry of Higher Education Malaysia through Fundamental Research GrantScheme(FRGS-Grant No:FRGS/1/2020/TK0/USM/02/1).
文摘Recently,a trust system was introduced to enhance security and cooperation between nodes in wireless sensor networks(WSN).In routing,the trust system includes or avoids nodes related to the estimated trust values in the routing function.This article introduces Enhanced Metaheuristics with Trust Aware Secure Route Selection Protocol(EMTA-SRSP)for WSN.The presented EMTA-SRSP technique majorly involves the optimal selection of routes in WSN.To accomplish this,the EMTA-SRSP technique involves the design of an oppositional Aquila optimization algorithm to choose safe routes for data communication.For the clustering process,the nodes with maximum residual energy will be considered cluster heads(CHs).In addition,the OAOA technique gets executed to choose optimal routes based on objective functions with multiple parameters such as energy,distance,and trust degree.The experimental validation of the EMTA-SRSP technique is tested,and the results exhibited a better performance of the EMTA-SRSP technique over other approaches.
文摘Energy conservation has become a significant consideration in wireless sensor networks(WSN).In the sensor network,the sensor nodes have internal batteries,and as a result,they expire after a certain period.As a result,expanding the life duration of sensing devices by improving data depletion in an effective and sustainable energy-efficient way remains a challenge.Also,the clustering strategy employs to enhance or extend the life cycle of WSNs.We identify the supervisory head node(SH)or cluster head(CH)in every grouping considered the feasible strategy for power-saving route discovery in the clustering model,which diminishes the communication overhead in the WSN.However,the critical issue was determining the best SH for ensuring timely communication services.Our secure and energy concise route revamp technology(SECRET)protocol involves selecting an energy-concise cluster head(ECH)and route revamping to optimize navigation.The sensors transmit information over the ECH,which delivers the information to the base station via the determined optimal path using our strategy for effective data transmission.We modeled our methods to accom-plish power-efficient multi-hop routing.Furthermore,protected navigation helps to preserve energy when routing.The suggested solution improves energy savings,packet delivery ratio(PDR),route latency(RL),network lifetime(NL),and scalability.
基金Financial support for this study, provided by the National Natural Science Foundation of China (No.60674002) the Science and Technology Research of the Ministry of Railways of China (No. 2006x006-E), is gratefully acknowledged
文摘Underground mining is a hazardous industrial activity. In order to provide a safe working environment for miners, a Wireless Sensor Network (WSN) technology has been used for security monitoring. It can provide a wide range of surveillance with a relatively low cost. In this study, an Energy-Based Multipath Routing (EBMR) protocol is proposed, which considers residual energy capacity and link quality in choosing hops and routing paths. Hops and paths with a high residual energy capacity and link quality will have the best chance to be selected to transmit data packages. Since the EBMR stores several routes in the routing table, when the current path fails, another path will be chosen to fulfill the task immediately. In this way, EBMR improves reliability and decrease time latency. Compared to AOMDV and REAR, EBMR decreases time latency by 51% and 12%.
基金supported by the National Natural Science Foundation of China(Grant No.61571303,No.61571004)the Shanghai Natural Science Foundation(Grant No.21ZR1461700)+3 种基金the Shanghai Sailing Program(Grant No.19YF1455800)the National Science and Technology Major Project of China(No.2018ZX03001031)the Fundamental Research Funds for State Key Laboratory of Synthetical Automation for Process Industries(Grant No.PAL-N201703)the National Key Research and Development Program of China-Internet of Things and Smart City Key Program(No.2019YFB2101600,NO.2019YFB2101602,No.2019YFB2101602-03).
文摘The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how to elect a secure cluster head and balance the network load becomes an enormous challenge.In this paper,a Trust Management-based and Low Energy Adaptive Clustering Hierarchy protocol(LEACH-TM)is proposed.In LEACH-TM,by using the number of dynamic decision cluster head nodes,residual energy and density of neighbor nodes,the size of the cluster can be better constrained to improve energy efficiency,and avoid excessive energy consumption of a node.Simultaneously,the trust management scheme is introduced into LEACH-TM to defend against internal attacks.The simulation results show that,compared with LEACH-SWDN protocol and LEACH protocol,LEACH-TM outperforms in prolonging the network lifetime and balancing the energy consumption,and can effectively mitigate the influence of malicious nodes on cluster head selection,which can greatiy guarantee the security of the overall network.
文摘Wireless sensor networks (WSNs) consist of a large number of sensor nodes that monitor the environment and a few base stations that collect the sensor readings. Individual sensor nodes are subject to compromised security because they may be deployed in hostile environments and each sensor node communicates wirelessly. An adversary can inject false reports into the networks via compromised nodes. Furthermore, an adversary can create a wormhole by directly linking two compromised nodes or using out-of-band channels. If these two kinds of attacks occur simultaneously in a network, existing methods cannot defend against them adequately. We thus propose a secure routing method for detecting false report injections and wormhole attacks in wireless sensor networks. The proposed method uses ACK messages for detecting wormholes and is based on a statistical en-route filtering (SEF) scheme for detecting false reports. Simulation results show that the proposed method reduces energy consumption by up to 20% and provide greater network security.
文摘Nowadays,with the advancement of new technologies such as the Internet of Things,new applications and intelligent networks,the use of wireless sensor network increased considerably.They are prone to a variety of attacks.Thus,network security is of utmost importance to researchers.In the past,methods such as cryptography,authentication and hash function were used to create security in this type of network.However,due to the limitations of this type of network,trust-based methods are used today.Finding a secure route for transferring data among available routes greatly increases security in this network.In this paper,we present aTrust-based Routing Optimization using Multi-Ant Colonies(MACRAT)scheme which is based on the improvement of the ant meta-heuristic algorithm and an improved method for trust assessment which is presented.The simulation results illustrate that MACRAT is more efficient than existing routing protocols.The results show that MACRAT improved by 10% in black hole detection compared to ESRT protocol and by 4% compared to M-CSO protocol,the packet loss rate in MACRAT improved by 30.14%compared to ESRT protocol and 6%compared to M-CSO protocol.
基金supported by the National Natural Science Foundation of China(No. 60573141, 60773041)National High Technology Research and Devel-opment Program of China(863 Program) (No. 2006AA01Z201, 2006AA01Z219, 2007AA01Z404, 2007AA01 Z478)the Provincial Jiangsu High Technology Research Program(No. BG2006001)
文摘We analyze and summarize the literatures on secure routing protocols published since 2003.Firstly,threats and attacks on sensor network routing are sorted and summarized.Then the current secure routing protocols are also classified.According to the taxonomy,some typical secure routing protocols are clarified particularly.Besides,the advantage and disadvantage of these secure routing protocols are compared and analyzed.Finally,we conclude this paper and prospect the future work.
文摘Mobile wireless sensor network (MWSN) has the features of self-organization, multiple-hop and limited energy resources. It is vulnerable to a wide set of security attacks, including those targeting the routing protocol functionality. In this paper, the existing security problems and solutions in MWSN are summarized, and then a trust management system based on neighbor monitoring is proposed. In the trust management system, the trust value is calculated by the neighbor monitoring mechanism, and the direct trust value and the indirect trust value are combined to establish the distributed trust model to detect the malicious nodes. The consistency check algorithm is capable of defending against the attacks on the trust model. In addition, because of the limited energy of the sensor nodes, the energy-balanced algorithm is introduced to prolong the lifespan of MWSN. The residual energy and energy density are considered in the routing decision. Finally, the simulation experiments show that the proposed algorithm can detect the malicious nodes effectively and achieve the energy-balanced goal to prolong the lifespan of MWSN.
基金Supported by the National Natural ScienceFoundation of China (60373087 ,60473023 ,90104005)
文摘Cryptography and authentication are traditional approach for providing network security. However, they are not sufficient for solving the problems which malicious nodes compromise whole wireless sensor network leading to invalid data transmission and wasting resource by using vicious behaviors. This paper puts forward an extended hierarchical trusted architecture for wireless sensor network, and establishes trusted congregations by three-tier framework. The method combines statistics, economics with encrypt mechanism for developing two trusted models which evaluate cluster head nodes and common sensor nodes respectively. The models form logical trusted-link from command node to common sensor nodes and guarantees the network can run in secure and reliable circumstance.
文摘An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster heads and ordinary nodes act as those cluster sensors in all clusters. The structure of WSNs is a two-layer structure. The upper layer consists of all cluster heads and the lower layer consists of all ordinary sensors managed by their corresponding cluster heads. The cluster heads and the ordinary sensors establish their pairwise keys respectively through utilizing different methods. The arithmetic balances energy expense among all kinds of nodes, saves the node energy, and prolongs the life of wireless sensor networks. Additionally, Analysis demonstrates that the security of wireless sensor networks has been improved obviously even with some heterogeneous nodes.
文摘In this paper, we present a Micro-payment based Isolation of Misbehavior(MIM) secure routing protocol. The protocol contains three parts: micro-payment scheme, routingdiscovery and malicious nodes detection The micro-payment scheme proposed in MIM is the firstvirtual currency system that can be suit lor sensor network environment, Based on the micro-paymentscheme, we device an energy aware routing protocol, which forwards packets by auction. Furthermore,the base station can detect and isolate misbehave or non-cooptrare nodes according to the routinginformation.
基金This project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia under Grant No.(KEP-81-130-42)The authors,therefore acknowledge with thanks DSR technical and financial support。
文摘Security is a vital parameter to conserve energy in wireless sensor networks(WSN).Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy data transmission.But the available routing techniques do not involve security in the design of routing techniques.This study develops a novel statistical analysis with dingo optimizer enabled reliable routing scheme(SADO-RRS)for WSN.The proposed SADO-RRS technique aims to detect the existence of attacks and optimal routes in WSN.In addition,the presented SADORRS technique derives a new statistics based linear discriminant analysis(LDA)for attack detection,Moreover,a trust based dingo optimizer(TBDO)algorithm is applied for optimal route selection in the WSN and accomplishes secure data transmission in WSN.Besides,the TBDO algorithm involves the derivation of the fitness function involving different input variables of WSN.For demonstrating the enhanced outcomes of the SADO-RRS technique,a wide range of simulations was carried out and the outcomes demonstrated the enhanced outcomes of the SADO-RRS technique.
文摘This paper proposed beta trust model based on energy load balancing combines the recent achievements of the trust models in distributed networks, together with the characteristics of wireless sensor networks. The inter-node trust relation is established after an overall evaluation of node trust value based on the monitor results of the node packets forwarding behavior conducted by inter-node collaboration. Due to the node energy limitation in wireless sensor networks, energy load balancing mechanism is applied to prolong the node survival time. And the redundant routing protocol involves the presented trust model to develop the novel trust routing protocol of beta trust model based on energy load balancing. Simulation performance demonstrates that the beta trust model based on energy load balancing outperforms current schemes in energy consumption.
文摘One of the most effective measurements of intercommunication and collaboration in wireless sensor networks which leads to provide security is Trust Management. Most popular decision making systems used to collaborate with a stranger are tackled by two different existing trust management systems: one is a policy-based approach which verifies the decision built on logical properties and functionalities;the other approach is reputation-based approach which verifies the decision built on physical properties and functionalities of WSN. Proofless authorization, unavailability, vagueness and more complexity cause decreased detection rate and spoil the efficacy of the WSN in existing approaches. Some of the integrated approaches are utilized to improve the significance of the trust management strategies. In this paper, a Compact Trust Computation and Management (CTCM) approach is proposed to overcome the limitations of the existing approaches, also it provides a strong objective security with the calculability and the available security implications. Finally, the CTCM approach incorporates the optimum trust score for logical and physical investigation of the network resources. The simulation based experiment results show that the CTCM compact trust computation and management approach can provide an efficient defending mechanism against derailing attacks in WSN.
文摘In this paper, we consider the scalable of wireless sensor networks with trust-based security. In our setting, the nodes have limited capability so that heavy computations are not suitable. So public key cryptographic algorithms are not allowed. We focus on the scalability of the network and proposed new testing algorithms and evaluation algorithms to test new nodes added, which give them reasonable values of trust. Based on these algorithms, we proposed new components for trust management system of wireless sensor networks.
文摘针对无线传感器网络中存在的安全问题,提出了基于Q-Learning的分簇无线传感网信任管理机制(Q-learning based trust management mechanism for clustered wireless sensor networks,QLTMM-CWSN).该机制主要考虑通信信任、数据信任和能量信任3个方面.在网络运行过程中,基于节点的通信行为、数据分布和能量消耗,使用Q-Learning算法更新节点信任值,并选择簇内信任值最高的节点作为可信簇头节点.当簇中主簇头节点的信任值低于阈值时,可信簇头节点代替主簇头节点管理簇内成员节点,维护正常的数据传输.研究结果表明,QLTMM-CWSN机制能有效抵御通信攻击、伪造本地数据攻击、能量攻击和混合攻击.