期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved Proximal Policy Optimization Algorithm for Sequential Security-constrained Optimal Power Flow Based on Expert Knowledge and Safety Layer 被引量:1
1
作者 Yanbo Chen Qintao Du +2 位作者 Honghai Liu Liangcheng Cheng Muhammad Shahzad Younis 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第3期742-753,共12页
In recent years,reinforcement learning(RL)has emerged as a solution for model-free dynamic programming problem that cannot be effectively solved by traditional optimization methods.It has gradually been applied in the... In recent years,reinforcement learning(RL)has emerged as a solution for model-free dynamic programming problem that cannot be effectively solved by traditional optimization methods.It has gradually been applied in the fields such as economic dispatch of power systems due to its strong selflearning and self-optimizing capabilities.However,existing economic scheduling methods based on RL ignore security risks that the agent may bring during exploration,which poses a risk of issuing instructions that threaten the safe operation of power system.Therefore,we propose an improved proximal policy optimization algorithm for sequential security-constrained optimal power flow(SCOPF)based on expert knowledge and safety layer to determine active power dispatch strategy,voltage optimization scheme of the units,and charging/discharging dispatch of energy storage systems.The expert experience is introduced to improve the ability to enforce constraints such as power balance in training process while guiding agent to effectively improve the utilization rate of renewable energy.Additionally,to avoid line overload,we add a safety layer at the end of the policy network by introducing transmission constraints to avoid dangerous actions and tackle sequential SCOPF problem.Simulation results on an improved IEEE 118-bus system verify the effectiveness of the proposed algorithm. 展开更多
关键词 Sequential security-constrained optimal power flow(SCOPF) expert experience safety layer renewable energy safe reinforcement learning
原文传递
基于时空正交配置的电力-天然气互联系统最优校正控制方法 被引量:7
2
作者 杜蕙 林涛 +2 位作者 李轻言 张效宁 徐遐龄 《电工技术学报》 EI CSCD 北大核心 2023年第7期1765-1779,共15页
构建电力-天然气互联系统(EGIS)有助于促进能源结构转型,但同时造成了耦合系统间故障传播的风险。为消除EGIS中N-1故障造成的安全越限,防范连锁故障发生,该文提出一种基于时空正交配置(STOC)的EGIS最优校正控制方法。首先,针对偏微分方... 构建电力-天然气互联系统(EGIS)有助于促进能源结构转型,但同时造成了耦合系统间故障传播的风险。为消除EGIS中N-1故障造成的安全越限,防范连锁故障发生,该文提出一种基于时空正交配置(STOC)的EGIS最优校正控制方法。首先,针对偏微分方程描述的无限维气网动态管流模型,采用STOC在时空维度同时离散,转换为配置点处的有限维代数方程约束;然后,基于STOC气网动态管流约束和电网交流潮流约束,构建以校正控制代价最小为目标的安全约束最优能流模型,以获取最优校正控制策略;最后,通过算例验证了基于STOC方法与现有方法相比在精度和效率上的优越性,以及所得最优校正控制策略的有效性。所提方法在EGIS故障后具有在线辅助决策的应用潜力。 展开更多
关键词 电力-天然气互联系统 最优校正控制 安全约束最优能流 气网动态管流 时空 正交配置
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部