期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Impact of water and sediment discharges on subaqueous delta evolution in Yangtze Estuary from 1950 to 2010 被引量:2
1
作者 Yun-ping YANG Yi-tian LI +1 位作者 Yong-yang FAN Jun-hong ZHANG 《Water Science and Engineering》 EI CAS CSCD 2014年第3期331-343,共13页
In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show... In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show that, during the period from 1950 to 2010, there was no significant change in the annual water discharge, and the multi-annual mean water discharge increased in dry seasons and decreased in flood seasons. However, the annual sediment discharge and the multi-annual mean sediment discharge in flood and dry seasons took on a decreasing trend, and the intra-annual distribution of water and sediment discharges tended to be uniform. The evolution process from deposition to erosion occurred at the -10 m and -20 m isobaths of the subaqueous delta. The enhanced annual water and sediment discharges had a silting-up effect on the delta, and the effect of sediment was greater than that of water. Based on data analysis, empirical curves were built to present the relationships between the water and sediment discharges over a year or in dry and flood seasons and the erosion/deposition rates in typical regions of the suhaqueous delta, whose evolution followed the pattern of silting in flood seasons and scouring in dry seasons. Notably, the Three Gorges Dam has changed the distribution processes of water and sediment discharges, and the dam's regulating and reserving functions can benefit the subaqueous delta deposition when the annual water and sediment discharges are not affected. 展开更多
关键词 water discharge sediment discharge seasonal change DELTA Yangtze Estuary
下载PDF
Vertical distribution of sediment concentration 被引量:3
2
作者 Sai-hua HUANG Zhi-lin SUN +1 位作者 Dan XU Shan-shan XIA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第11期1560-1566,共7页
A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sedimen... A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sediment concentration has an infinitely large value at the channel bottom and a zero value at the water surface. Based on this formula and the logarithmic ve- locity profile, a theoretical elementary function for the transport rate of a suspended load is developed. This equation improves the Einstein equation in which the unit-width suspended sediment discharge must be solved by numerical integration and a contra- diction between the lower limit of the integral and that of velocity distribution exists. 展开更多
关键词 sediment concentration Vertical distribution Suspended load sediment discharge
下载PDF
Can the Grain-for-Green Program Really Ensure a Low Sediment Load on the Chinese Loess Plateau? 被引量:5
3
作者 Pengcheng Sun Yiping Wu +4 位作者 Zhifeng Yang Bellie Sivakumar Linjing Qiu Shuguang Liu Yanpeng Cai 《Engineering》 SCIE EI 2019年第5期855-864,共10页
The Chinese Loess Plateau is the most seriously eroded area in the world and contributes the vast majority of the sediment that goes into the Yellow River.Since the 1950s,progressive soil and water conservation measur... The Chinese Loess Plateau is the most seriously eroded area in the world and contributes the vast majority of the sediment that goes into the Yellow River.Since the 1950s,progressive soil and water conservation measures have been implemented—in particular,large-scale ecological restoration has been ongoing since 1999—resulting in a significant reduction of the sediment load.However,the mechanism of the sediment transport dynamics is not fully understood due to multiple and complicated influencing factors including climate change and human activities(e.g.,ecological restoration).A challenging question,then,arises:Is the current low sediment level a“new normal”in this era and in the future?To address this question,we selected a typical loess hilly region where considerable ecological restoration has been implemented,and which is regarded as the site of the first and most representative Grainfor-Green program in the Loess Plateau.We investigated the evolution of discharge–sediment relationships in the past decades(1960–2010)and their association with the soil and water conservation measures in this area.The results showed that there was a distinct change in the regression parameters of the commonly used annual discharge–sediment regression equation—a continuously increasing trend of parameter b and a decreasing trend of parameter a,accompanying the ecological restoration.The increase in exponent b(i.e.,a steeper slope)implies a potential lower sediment load resulting from low discharge and a potential higher sediment load resulting from large discharge.This finding may question the new normal of a low sediment level and implies the potential risk of a large sediment load during extremely wet years. 展开更多
关键词 Discharge–sediment relationship ECOLOGICAL restoration LOESS HILLY region sediment load sediment rating parameters
下载PDF
RELATION BETWEEN PRECIPITATION AND SEDIMENT TRANSPORT IN THE DASHA RIVER WATERSHED 被引量:1
4
作者 ZHANGJian-chun ZHANGWei +2 位作者 L1Ji-hong SHIZhi-gang PUShen-yuan 《Chinese Geographical Science》 SCIE CSCD 2004年第2期129-134,共6页
The study on sediment production and its relationship with climatic and hydrological factors in watershed is a major environment issue of concern in the international community. Based on the observational records cove... The study on sediment production and its relationship with climatic and hydrological factors in watershed is a major environment issue of concern in the international community. Based on the observational records covering the period from 1954 to 1999, the characteristics of precipitation changing over the Dasha River Watershed in Anhui Province and its relation to sediment yield were studied using tendency analysis and correlation analysis.Results showed that the precipitation of the Dasha River Watershed has high variability. In those 46 years, 34% of spring rainfall, 58% of summer rainfall and 30% of annual rainfall will be considered anomaly. The gray correlation analysis shows that sediment discharge correlates most closely with the frequency of the rainstorm with a daily precipitation above 100mm, secondly with the frequency of the rainstorm with a daily precipitation of 50-100mm, and thirdly with the number of rainy days. Their correlation coefficients are 0.98,0.90 and 0.85 respectively. In addition,the paper suggests the major countermeasures and methods for controlling of soil and water losses in this area. 展开更多
关键词 RAINFALL sediment discharge Dasha River Watershed
下载PDF
A STUDY ON THE RELATION BETWEEN THE VARIATION OF THE PRECIPITATION IN EASTERN JIANGHUAI WATERSHED AND SEDIMENT TRANSPORT IN CHIHE RIVER VALLEY
5
作者 ZHANG Jian chun, PENG Pu zhuo(Department of Urban and Resources Sciences,Nanjing University,Nanjing 210093,P.R.China ) 《Chinese Geographical Science》 SCIE CSCD 2002年第1期44-49,共6页
Rainfall resource is very important to the development of society and economy,especially to eastern Jianghuai watershed which is now facing serious challenge of water shortage. Based on the observational records cover... Rainfall resource is very important to the development of society and economy,especially to eastern Jianghuai watershed which is now facing serious challenge of water shortage. Based on the observational records covering the period from 1957 to 1999,the characteristics of precipitation changing over eastern JiangHuai watershed and its connection to sediment discharge in Chihe River valley were studied using tendency analysis and correlation analysis .Results show that the rainfall in this area had a declining tendency in Spring at a rate of -21.2mm/10a, annual and Summer precipitation was increasing at the rate of 10.6mm/10a and 14.8mm/10a. The gray correlation analysis shows that sediment discharge correlates most closely with runoffs and the frequency of the rainstorm with a daily precipitation of 50-100mm, on the second place,with the rainfall and the frequency of the rainstorm of a daily precipitation no less than 100mm;and thirdly with the number of rainy days. In addition, the paper suggests the major countermeasures and methods for controlling of soil and water losses in this area. 展开更多
关键词 eastern Jianghuai watershed Chihe River rainfall sediment discharge correlation grade
下载PDF
Sediment Transport in Rivers and Coastal Waters
6
作者 杨树清 余建星 王元战 《China Ocean Engineering》 SCIE EI 2003年第4期527-540,共14页
Following Bagnold's approach, a relationship between sediment transport and energy dissipation is developed. The major assumption made in the study is that the near bed velocity plays a dominant role in the proces... Following Bagnold's approach, a relationship between sediment transport and energy dissipation is developed. The major assumption made in the study is that the near bed velocity plays a dominant role in the process of sediment transport. A general relationship between energy dissipation and sediment transport is first proposed. Then the equations for total sediment transport are derived by introducing the appropriate expression of energy dissipation rate under different conditions, such as open channel flows, combination of wave and current, as well as longshore sediment transport. Within the flows investigated, the derived relationships are fairly consistent with the available data over a wide range of conditions. 展开更多
关键词 total sediment discharge longshore sediment transport rate of energy dissipation wave-current interaction
下载PDF
VARIATION IN FLOW AND SEDIMENT OF DASHA RIVER AND INFLUENCE OF HUMAN ACTIVITIES ON IT IN SOUTHWEST REGION OF ANHUI PROVINCE
7
作者 CHEN Bao-ping ZHANG Jian-chun 《Chinese Geographical Science》 SCIE CSCD 2006年第2期109-115,共7页
Soil and water loss is now a major environmental problem in many areas of China, especially in the area of the Dabie Mountain, Anhui Province, which results in environmental degradation and does harm to the people's ... Soil and water loss is now a major environmental problem in many areas of China, especially in the area of the Dabie Mountain, Anhui Province, which results in environmental degradation and does harm to the people's life and production there. Based on the observational records from the Dasha River, the authors analyze the character of the variation in flow and sediment in different flood and dry seasons from 1970 to 2000. The result shows that human activities had significantly reduced the sediment discharge and sediment module, and increased the runoff in low-water seasons since the 1980s. The average contribution rate ofhnman activities to decreasing sediment was 65.67%, and at the same period the contribution rate of runoff and rainfall was about 34.33%. Therefore, it is necessary to take the biological and engineering measures to solve the problem of soil and water loss in the Dasha River watershed. 展开更多
关键词 river flow sediment discharge human activities effect Dasha River southwest of Anhui Province
下载PDF
Spatiotemporal Evolution of Runoff and Sediment of the Taohe River and Its Driving Analysis
8
作者 Changquan ZHOU Hong MA +3 位作者 Jiantang XU Dengrui MU Yanbin LIU Xi LIU 《Meteorological and Environmental Research》 CAS 2022年第5期79-86,90,共9页
In order to explore the spatial and temporal changes of runoff and sediment in the Taohe River and its driving mechanism,Spearman correlation coefficient method,Mann-Kendell mutation test method and ordered clustering... In order to explore the spatial and temporal changes of runoff and sediment in the Taohe River and its driving mechanism,Spearman correlation coefficient method,Mann-Kendell mutation test method and ordered clustering method were used to analyze the changes of runoff and sediment discharge and their driving factors in four hydrological stations along the Taohe River from 1957 to 2016.The results showed that the correlation between runoff and sediment of the four hydrological stations along the Taohe River was significant,and the correlation coefficient was 0.728-0.984.The runoff and sediment transport in the interval showed an increasing and decreasing trend.The decrease rate of runoff was 133.82%-216.17%higher than that of Xiabagou station,and the decrease rate of sediment transport was 250.49%-4766.33%higher than that of Xiabagou station.The mutation year of the Taohe River runoff occurred in 1986,and the maximum decrease was 35%.The water-sediment relationship curves of different periods showed that the sediment discharge of the four stations changed abruptly around 1990,and the maximum reduction before and after the mutation was up to 73%,and the sediment discharge in the river channel decreased significantly.The research showed that human activities were the main driving factors for the change of water-sediment relationship in the Taohe River. 展开更多
关键词 The Taohe River RUNOFF sediment discharge Water and sediment changes Water-sediment relationship
下载PDF
The design of Three Gorges Hydropower Station
9
作者 Zhou Shuda Xie Hongbing 《Engineering Sciences》 EI 2011年第3期66-73,共8页
Using physical model and numerical simulation techniques, some technical problems were studied systemati- cally, including layout of power station, measures of sediment and floating debris discharging, types of intake... Using physical model and numerical simulation techniques, some technical problems were studied systemati- cally, including layout of power station, measures of sediment and floating debris discharging, types of intake, embed- ded types of spiral ease, layout of underground powerhouse tunnel group and block reinforcement. It was optimal in technique and economy with the arrangement of powerhouse at the dam-toe of both banks + underground powerhouse in the right bank, as well as the intake with a single and small orifice. The sediment and debris problems could be solved with disperse sediment ejection and floating debris discharging holes. With the adoption of techniques for spiral cases such as heat and pressure preservation, cushion layer and combined embedding, the stable operation of generating units can be guaranteed. The arrangement of tailrace tunnel with sloping ceiling was better than that of tailrace surge tank. The technical requirements related to the embedding type of spiral case were proposed. The reinforcement of huge unfavorable blocks was discussed and the new idea for block reinforcement using anti-sliding piles and normal compressive stress of structural plane was put forward. 展开更多
关键词 Three Gorges Power Station layout sediment and floating debris discharging spiral case embedding shallow embedment block reinforcement
下载PDF
The synchronicity and difference in the change of suspended sediment concentration in the Yangtze River Estuary 被引量:8
10
作者 YANG Yunping DENG Jinyun +2 位作者 ZHANG Mingjin LI Yitian LIU Wanli 《Journal of Geographical Sciences》 SCIE CSCD 2015年第4期399-416,共18页
The sediment discharge from the Yangtze River Basin has a stepwise decreasing trend in recent years. The impounding of the Three Gorges Reservoir exacerbated this de- creasing trend and affected the change of the susp... The sediment discharge from the Yangtze River Basin has a stepwise decreasing trend in recent years. The impounding of the Three Gorges Reservoir exacerbated this de- creasing trend and affected the change of the suspended sediment concentration (SSC) in the Yangtze River Estuary through the transmission effect. The SSC data of the Yangtze River Estuary during 1959-2012 showed that: (1) The SSC in the South Branch of the Yang- tze River in the estuary and in the off-shore sea area displayed decreasing trends and de- creased less towards the sea. At the same time, the difference in decreasing magnitude be- tween SSC and sediment discharge became bigger towards the sea. (2) For the North Branch the preferential flow did not change much but the SSC tended to decrease, which was mainly caused by the decrease of SSC in the South Branch and China East Sea. (3) Due to the de- creased runoff and the relatively strengthened tide, the peak area of the SSC in the bar shoal section in 2003-2012 moved inward for about 1/6 longitude unit compared with that in 1984-2002, and the inward-moving distance was in the order of flood season 〉 annual average 〉 dry season. (4) In the inlet of the South Passage, the SSC decreased mainly because the increase caused by resuspension and shore-groove exchange was less than the decrease caused by the sharp SSC decrease in the basin and the sea areas. The reverse was true in the middle section, where the SSC showed an increasing trend. (5) In the inlet of the North Passage, under the combined influence of decreased flow split and sediment split ratios, the decreased SSC in the basin and the sea area and decreased amount of resuspension, the SSC displayed a decreasing trend. In the middle section, because the increased amount caused by sediment going over the dyke was markedly more than the decreased amount caused by external environments, the SSC tended to increase. Holistically, the sharp decrease in sediment discharge caused synchronized SSC decreases in the Yangtze River Estuary. But there were still areas, where the SSC displayed increasing trends, indicatingsynchronicity and difference in the response of SSC to the sharp decrease in sediment discharge from the basin. 展开更多
关键词 suspended sediment concentration SYNCHRONICITY DIFFERENCE sediment discharge Yangtze River Es-tuary
原文传递
Analysis of the contribution of multiple factors to the recent decrease in discharge and sediment yield in the Yellow River Basin, China 被引量:8
11
作者 姚文艺 肖培青 +2 位作者 申震洲 王金花 焦鹏 《Journal of Geographical Sciences》 SCIE CSCD 2016年第9期1289-1304,共16页
The Yellow River basin is well known for its high sediment yield. However, this sediment yield has clearly decreased since the 1980 s, especially after the year 2000. The annual average sediment yield was 1.2 billion ... The Yellow River basin is well known for its high sediment yield. However, this sediment yield has clearly decreased since the 1980 s, especially after the year 2000. The annual average sediment yield was 1.2 billion tons before 2000, but has significantly decreased to 0.3 billion tons over the last 10 years. Changes in discharge and sediment yield for the Yellow River have attracted the attention of both the Central Government and local communities. This study aimed to identify the individual contributions of changes in precipitation and human activities(e.g. water conservancy projects, terracing, silt dams, socio-economic and needs, and soil and water conservation measures) to the decrease in discharge and sediment yield of the Yellow River. The study used both improved the hydrological method and the soil and water conservation method. The study focused on discharge analysis for the upper reaches and the investigation of sediments for the middle reaches of the river. The results showed that discharge and sediment yield have both presented significant decreasing trends over the past 50 years. Precipitation showed an insignificant decreasing trend over the same period. The annual average discharge decreased by 5.68 billion m3 above Lanzhou reach of the Yellow River from 2000 to 2012; human activities(e.g. socio-economic water use) contributed 43.4% of the total reduction, whereas natural factors(e.g. evaporation from lakes, wetlands and reservoirs) accounted for 56.6%. The decrease in annual discharge and sediment yield of the section between Hekouzhen station and Tongguan station were 12.4 billion m3 and 1.24 billion tons, respectively. Human activities contributed 76.5% and 72.2% of the total reduction in discharge and sediment yield, respectively, and were therefore the dominant factors in the changes in discharge and sediment yield of the Yellow River. 展开更多
关键词 human activities soil and water conservation climate change discharge and sediment yield YellowRiver China
原文传递
Temporal variability of water discharge and sediment load of the Yellow River into the sea during 1950-2008 被引量:6
12
作者 LIU Feng CHEN Shenliang PENG Jun CHEN Guangquan 《Journal of Geographical Sciences》 SCIE CSCD 2011年第6期1047-1061,共15页
Based on hydrological data observed at Lijin gauging station from 1950 to 2008, the temporal changes of water discharge and sediment load of the Yellow River into the sea were analyzed by the wavelet analysis, and the... Based on hydrological data observed at Lijin gauging station from 1950 to 2008, the temporal changes of water discharge and sediment load of the Yellow River into the sea were analyzed by the wavelet analysis, and their impacts on the estuary were investigated in different periods based on the measured coastline and bathymetry data. The results show that: (1) there were three significant periodicities, i.e. annual (0.5-1.0-year), inter-annual (3.0-6.5-year) and decadal (10.1-14.2-year), in the variations of water discharge and sediment load into the sea, which might be related to the periodic variations of El Nino and Southern Oscillation at long-term timescales. Variations of water discharge and sediment load were varying in various timescales, and their periodic variations were not significant during the 1970s-2000s due to strong human disturbances. (2) The long-term variation of water discharge and sediment load into the sea has shown a stepwise decrease since the 1950s due to the combined influences of human activities and precipitation decrease in the Yellow River Basin, and the human activities were the main cause for the decrease of water discharge and sediment load. (3) The water discharge and sediment load into the sea greatly influenced the evolution of the Yellow River Estuary, especially the stretch rate of coastline and the deposition rate of the sub-aqueous topography off the estuary which deposited since 1976. 展开更多
关键词 Yellow River water discharge and sediment load wavelet analysis multiscale variability estuarineevolution
原文传递
A Field Experiment on Dust Emission by Wind Erosion in the Taklimakan Desert 被引量:15
13
作者 杨兴华 何清 +3 位作者 艾力.买买提依明 霍文 刘新春 STRAKE Miriam 《Acta meteorologica Sinica》 SCIE 2012年第2期241-249,共9页
Dust emission by wind erosion in surface is a serious problem in many arid regions around the world,and it is harmful to the ecological environment,human health,and social economy.To monitor the characteristics of sal... Dust emission by wind erosion in surface is a serious problem in many arid regions around the world,and it is harmful to the ecological environment,human health,and social economy.To monitor the characteristics of saltation activity and to calculate the threshold wind velocity and sediment discharge under field conditions have significance on the research of dust emission by wind erosion.Therefore,a field experiment was conducted over the flat sand in the hinterland of the Taklimakan Desert.One sampling system was installed on the flat sand surface at Tazhong,consisting of a meteorological tower with a height of 2 m,a piezoelectric saltation sensor(Sensit),and a Big Spring Number Eight(BSNE) sampler station.Occurrence of saltation activity was recorded every second using the Sensit.Each BSNE station consisted of five BSNE samplers with the lowest sampler at 0.05 m and the highest sampler at 1.0 m above the soil surface.Sediment was collected from the samplers every 24 h.It is found that saltation activity was detected for only 21.5% of the hours measured,and the longest period of saltation activity occurring continuously was not longer than 5 min under the field conditions.The threshold wind velocity was variable,its minimum value was 4.9 m s 1,the maximum value was 9.2 m s 1,and the average value was 7.0 m s 1.The threshold wind velocity presented a positive linear increase during the measurement period.The observation site had a sediment discharge of 82.1 kg m 1 over a period of 24 h.Based on hourly saltation counts,hourly sediment discharge was estimated.Overall,there was no obvious linear or other functional relationship between the hourly sediment discharge and wind velocity.The results show that the changes of sediment discharge do not quite depend on wind velocity. 展开更多
关键词 wind erosion saltation activity threshold wind velocity sediment discharge Taklimakan Desert
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部