Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flo...Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flow field around roadbeds, overlooking detailed examinations of sand particle erosion and deposition patterns near bridges and roadbeds. This study employs numerical simulations to analyze the influence of varying heights and wind speeds on sand deposition and erosion characteristics at different locations: the bridge-road transition section(side piers), middle piers, and roadbeds. The results show that the side piers, experience greater accumulation than the middle piers. Similarly, the leeward side of the roadbed witnesses more deposition compared to the windward side. Another finding reveals a reduced sand deposition length as the vertical profile, in alignment with the wind direction, moves further from the bridge abutments at the same clearance height. As wind speeds rise, there’s a decline in sand deposition and a marked increase in erosion around the side piers, middle piers and roadbeds. In conclusion, a bridge clearance that’s too low can cause intense sand damage near the side piers, while an extremely high roadbed may lead to extensive surface sand deposition. Hence, railway bridges in areas prone to sandy winds should strike a balance in clearance height. This research provides valuable guidelines for determining the most suitable bridge and roadbed heights in regions affected by wind and sand.展开更多
Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological prote...Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.展开更多
Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conser...Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conservation measures in ephemeral gullies.In this study,an artificial simulated confluence test and stereoscopic photogrammetry were used to analyze the distribution characteristics of erosion and deposition in ephemeral gullies protected by geocells and the effect of different confluence flows on the erosion process of ephemeral gullies.Results showed that when the confluence flow was larger,the effect of geocell was more evident,and the protection against ephemeral gully erosion was stronger.When the confluence flow rates were 0.6,1.8,2.4,and 3.0 m^(3)/h,ephemeral gully erosion decreased by 37.84%,26.09%,21.40%,and 35.45%.When the confluence flow rates were 2.4 and 3.0 m^(3)/h,the average sediment yield rate of the ephemeral gully was close to 2.14 kg/(m^(2)•min),and the protective effect of ephemeral gully erosion was enhanced.When the flow rate was higher,the surface fracture of the ephemeral gully was more serious.With an increase in confluence flow rate,the ratio of erosion to deposition increased gradually,the erosion area of ephemeral gullies was expanded,and erosion depth changed minimally.In conclusion,geocell measures changed erosion patterns by altering the rill erosion/deposition ratio,converting erosion from rill erosion to sheet erosion.展开更多
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t...For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.展开更多
Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion vo...Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion volumes.However,the impacts of soil crust conditions on the erosion of colluvial deposits with granite residual soils have only been studied to a limited extent.To address this issue,this study investigates the impacts of three soil crust conditions(i.e.,without crust,10-minute crust,and 20-minute crust)on gully morphology,rainfall infiltration,and runoff and sediment yield during slope erosion of colluvial deposits with granite residues(classified as Acrisols)in Yudu County,Ganzhou City,Jiangxi Province,China,using simulated rainfall tests and photographic methods.The results showed that as the strength of the soil crust increased,the capacity of moisture infiltration and the width and depth of the gully as well as the sediment concentration and yield ratio decreased;at the same time,the runoff ratio increased.The sediment yield in the without-crust test was found to be 1.24 and 1.43 times higher than that observed in the 10-minute crust and 20-minute crust tests,respectively.These results indicate that soil crusts can effectively prevent slope erosion and moisture infiltration,while providing valuable insights for the management of soil erosion in natural environments.展开更多
The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand b...The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.展开更多
The sediments of the Dongting Lake come from four channels (one of them was closed in 1959), connected with the Yangtze River, four tributaries (Lishui, Yuanjiang, Zishui and Xiangjiang) and local area, and some of th...The sediments of the Dongting Lake come from four channels (one of them was closed in 1959), connected with the Yangtze River, four tributaries (Lishui, Yuanjiang, Zishui and Xiangjiang) and local area, and some of them are transported into the Yangtze River in Chenglingji, which is located at the exit of the Dongting Lake, some of them deposit into drainage system in the lake region and the rest deposit into the lake. The annual mean sediment is 166,555x104 t, of which 80% come from the four channels, 18% from the four tributaries and 2% from local area, whereas 26% of the total sediments are transported into the Yangtze River and 74% deposited into the lake and the lake drainage system. Based on topographic maps of 1974, 1988 and 1998, and the spatial analysis method with geographic information system (GIS), changes in sediment deposition and erosion are studied in this paper. By overlay analysis of 1974 and 1988, 1988 and 1998, erosion and sediments deposition areas are defined. The main conclusions are: (1) sediment rate in the lake is larger than erosion rate from 1974 to 1998. The mean deposition in the lake is 0.43 m; (2) annual sediment deposition is the same between 1974-1988 and 1988-1998, but the annual volume of deposition and erosion of 1988-1998 is bigger than that in 1974-1988; (3) before the completion of the Three Gorges Reservoir, there will be 7.82x108 m3 of sediments deposited in the lake, which would make the lake silted up by 0.33 m; (4) in the lake, the deposition area is found in the north of the east Dongting Lake, the south-west of the south Dongting Lake, and the east of the west Dongting Lake; while the eroded area is in the south of the east Dongting Lake, the middle of the south Dongting Lake, the west of the west Dongting Lake, as well as Xiangjiang and Lishui river flood channels.展开更多
The seabed scouring and silting are very important to the construction of port and waterway engineering. Seabed deposition and erosion change is complicated due to the influence of sediment supply, human activities an...The seabed scouring and silting are very important to the construction of port and waterway engineering. Seabed deposition and erosion change is complicated due to the influence of sediment supply, human activities and other factors. The Yangshan Deepwater Port is the new deep water harbor, which is an important part of the Shanghai International Shipping Service Center. Its construction has received much attention. At present, the water depth from the 1 st to the 3 rd harbor district is currently suitable under regular dredging and tidal current action. The fourth harbor district will be built in the world’s largest fully-automated deep water wharf. In the study, bathymetry change of the entire sea area of the Yangshan Deepwater Port and the 4 th harbor district(i.e.,Phase IV project) waters were analyzed quantitatively using multiyear bathymetric, hydrological and sediment data. The results show that from 1998 to 2010, seabed changes are characterized by large volumes of erosion and sedimentation, which the southern part was deposited and the northern part was eroded in the inner harbor waters, but the seabed of the Kezhushan inlet was eroded. Seabed changes of Phase IV project waters generally show a scour tendency in recent few years with the annual scour rate about 0.7 m. Among the many factors, the existence of Kezhushan inlet and its influence of the western water flow play an important positive role in water depth changes under the ebb tide action.展开更多
The oasis-desert ecotone is a fragile ecological zone that is affected both by oasis and desert conditions. To understand the impact of the differences in wind power, and the influence of wind erosion and deposition o...The oasis-desert ecotone is a fragile ecological zone that is affected both by oasis and desert conditions. To understand the impact of the differences in wind power, and the influence of wind erosion and deposition on the ecotone, meteorological data and con- temporaneous wind erosion and deposition data were collected on the southern margin of Tarim Basin with serious sand-blown hazards. The wind velocity, average wind velocity, sand drift potential (DP), resultant sand drift potential (RDP), and sand transportation rate decrease significantly and successively across four landscape types with increasing vegetation coverage (VC). Flat surfaces and areas of shifting sandy ground experience intense wind erosion with fast movement of mobile sand dunes; semi-fixed sand areas experience ex- tensive wind deposition but only slight wind erosion; and fixed sand areas experience only slight wind erosion and deposition. Volume of wind erosion on bare newly reclaimed farmland is up to 6.96 times that of bare shifting sandy ground. Wind erosion volume per unit area and VC follow an exponential function relationship in natural conditions, while wind deposition volume per unit area does not conform to any functions which has close relationship with vary topography and arrangement patterns of vegetation besides for VC. The results indicate that the volume of wind erosion has a close correlation with VC, and different types and distribution patterns of topog- raphy and vegetation also profoundly influence the wind deposition volume in the field, and underground water tables in different land- scape types control the plant community distribution. Keywords: wind erosion; wind deposition; oasis-desert ecotone; vegetation coverage (VC); topography; Cele County展开更多
The Dunhuang–Golmud railway passes through different deserts in arid areas,especially drifting-sand desert and sandy-gravel Gobi.The near-surface wind environment and wind-sand transport process vary due to different...The Dunhuang–Golmud railway passes through different deserts in arid areas,especially drifting-sand desert and sandy-gravel Gobi.The near-surface wind environment and wind-sand transport process vary due to different external factors,such as topography,vegetation,and regional climate,resulting in evident spatial differences in surface erosion and deposition.Consequently,the measures for preventing wind-sand hazards will differ.However,the mechanism and control theory of sand damage remain poorly understood.In this study,we used meteorological observation,three-dimensional(3D)laser scanning,and grain-size analysis to compare and evaluate the spatial distribution of wind conditions,sand erosion and deposition patterns,and grain composition in the drifting-sand desert and sandy-gravel Gobi along the Dunhuang–Golmud railway in China.Results show that the annual mean wind speed,the frequency of sand-driving wind,and the drift potential of sandy-gravel Gobi are higher than those of drifting-sand desert,indicating a greater wind strength in the sandy-gravel Gobi,which exhibits spatial heterogeneity in wind conditions.The major sediment components in sandy-gravel Gobi are very fine sand,fine sand,and medium sand,and that in drifting-sand desert are very fine sand and fine sand.We found that the sediment in the sandy-gravel Gobi is coarser than that in the drifting-sand desert based on mean grain size and sediment component.The spatial distributions of sand erosion and deposition in the sandy-gravel Gobi and drifting-sand desert are consistent,with sand deposition mainly on the west side of the railway and sand erosion on the east side of the railway.The area of sand deposition in the drifting-sand desert accounts for 75.83%of the total area,with a mean deposition thickness of 0.032 m;while the area of sand deposition in the sandy-gravel Gobi accounts for 65.31%of the total area,with a mean deposition thickness of 0.028 m,indicating greater deposition amounts in the drifting-sand desert due to the presence of more fine sediment components.However,the sand deposition is more concentrated with a greater thickness on the embankment and track in the sandy-gravel Gobi and is dispersed with a uniform thickness in the drifting-sand desert.The sand deposition on the track of the sandy-gravel Gobi mainly comes from the east side of the railway.The results of this study are helpful in developing the preventive measures and determining appropriate selection and layout measures for sand control.展开更多
Abstract Dedicated experiments in the HT-7 tokamak were performed to investigate the in- fluence of erosion and deposition on the mirror samples. The first mirror (FM) samples made of polyerystalline (PC) stainles...Abstract Dedicated experiments in the HT-7 tokamak were performed to investigate the in- fluence of erosion and deposition on the mirror samples. The first mirror (FM) samples made of polyerystalline (PC) stainless steel (SS), molybdenum (Mo) and tungsten (W) were fixed on a holder at an angle of 45° with respect to the horizontal plane and set at different locations with different connection lengths along the magnetic field. The optical reflectivity of the first mirror was measured by a spectrophotometer before and after plasma exposure. It was found that the surface morphology and specular reflectivity of the mirror samples after the exposure were different with respect to the different distances from the mirror surface to the last closed flux surface (LCFS) of the plasma in the tokamak. It was also found that shortening the connection length before the mirror surface would weaken the influence of the plasma erosion and impurity deposition on the mirror surface. In order to maintain the optical characteristics of the mirror surface, it is necessary to adopt the in-situ cleaning and mirror protection techniques.展开更多
e movable limiter at the mid-plane of the Experimental Advanced Superconducting Tokamak (EAST) with carbon coatings on the surface was exposed to edge plasma to study the material erosion and re-deposition.After the...e movable limiter at the mid-plane of the Experimental Advanced Superconducting Tokamak (EAST) with carbon coatings on the surface was exposed to edge plasma to study the material erosion and re-deposition.After the experiments,the carbon erosion and re-deposition is modelled using the 3D Monte Carlo code ERO.The geometry of the movable limiter,3D configuration of the plasma parameters and electromagnetic fields under both limiter and divertor configurations have been implemented into the code.In the simulations,the main uncertain parameters such as carbon concentration ρc in the background plasma and cross-field transport coefficient D⊥ in the vicinity of surface according to the ‘funneling model',have been studied in comparison with experiments.The parameter ρc mainly influences the net erosion and deposition profiles of the two sides of the movable limiter,while D ⊥ mostly changes the profiles on the top surface.展开更多
Tracing erosion flux within a single catchment is one of the major targets for the Earth's Critical Zone science. The sedimentary succession in landslide-dammed reservoirs within the Chinese Loess Plateau(CLP) ser...Tracing erosion flux within a single catchment is one of the major targets for the Earth's Critical Zone science. The sedimentary succession in landslide-dammed reservoirs within the Chinese Loess Plateau(CLP) serves as a valuable archive of past erosion history. Deposition couplets and annual freeze–thaw layers were firstly identified for the sedimentary succession of the Jingbian reservoir on the northern CLP with high-resolution XRF core scanning. The deposition couplets in the reservoir since 1963 A.D. were further dated with ^(137) Cs activity. We found consistent one-to-one correspondence between couplet specific sediment yield and storm intensity. The reconstructed soil erosion history highlights the control of storm intensity and frequency on loess erosion on the northern CLP in the past hundreds of years.展开更多
Taking Yancheng Nature Reserve Salt Marsh as the research object,the remote sensing images from 2005 to 2020 were interpreted by using remote sensing and geographic information system technology.In this paper,the temp...Taking Yancheng Nature Reserve Salt Marsh as the research object,the remote sensing images from 2005 to 2020 were interpreted by using remote sensing and geographic information system technology.In this paper,the temporal and spatial variation characteristics of erosion and deposition in the front edge of salt marsh wetland were analyzed.The influence of sea level rise on the annual change of salt marsh area was analyzed.The characteristics of flow and sediment movement in salt marsh and the causes of erosion and deposition in front of salt marsh were analyzed.The results showed that:(1)During 2005-2007,the sea level was relatively low,and Spartina alterniflora in salt marsh expanded to the sea.Since 2007,the front edge of salt marsh wetland has coexisted with erosion and deposition.From 2008 to 2010,the front edge of salt marsh wetland once again showed a trend of comprehensive deposition to the sea side.From 2010 to 2012,the erosion of salt marsh wetland was serious.From 2012 to 2020,the front edge of salt marsh wetland in the range of 9 km south of Xinyang estuary was eroded.(2)The correlation analysis was carried out between the area of salt marsh wetland and sea level rise.Spartina alterniflora is easily affected by sea level change,owing to it having a low ecological niche.With the rise of sea level,the area of salt marsh has been decreasing since 2013.(3)In the front sea area of salt marsh wetland,the maximum velocity of the ebb and flood can reach the threshold velocity during the spring tide.The sediment starts to move at water depth of 10 m under wave actions.Owing to wave stirs up sediment and current transports the sediment,resuspended sediment causes the erosion of marsh-edge scarps.展开更多
By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass ...By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass coverage degrees of 0, 30%, 50%, 70%, 90%, three spatial locations of grass (upslope, mid-slope, low-slope) and two water inflow rates of 3.2 L/min, 5.2 L/min were applied to a 0.5 by 7 m soil bed in scouring experiments. Results showed that the sediment yield decreased with the increase of grass coverage degree at 3.2 L/min water inflow rate in scouring experiments and the sediment yield with different grass locations on the sloping surface was in the order of upper 〉 middle 〉 lower. At 5.2 L/min water inflow rate, the differences of sediment yield among various grass coverage degrees were increased, whereas the changeable tendency of sediment yield with different grass locations on the whole sloping surface was not very obvious. The proportion of sediment yield from the gully side increased in an exponential relationship with the increase of grass coverage degree When the grass was located on the lower position of hillslope, the influence for accelerating gully erosion is the greatest.展开更多
The freeze-thaw (FT) processes affect an area of 46.3% in China. It is essential for soil and water conservation and ecological construction to elucidate the mechanisms of the FF processes and its associated soil er...The freeze-thaw (FT) processes affect an area of 46.3% in China. It is essential for soil and water conservation and ecological construction to elucidate the mechanisms of the FF processes and its associated soil erosion processes. In this research, we designed the control simulation experiments to promote the understanding of FT-water combined erosion processes. The results showed that the runoff of freeze-thaw slope (FTS) decreased by 8% compared to the control slope (CS), and the total sediment yield of the FTS was 1.10 times that of the CS. The sediment yield rate from the FTS was significantly greater than that from the CS after 9 min of runoff (P〈0.01). Both in FTS and CS treatments, the relationships between cumulative runoff and sediment yield can be fitted well with power functions (R2〉0.98, P〈0.01). Significant differences in the mean weight diameter (MWD) values of particles were between the CS and the FTS treatments in the erosion were smaller than those under FTS for both washed and observed for washed particles and splashed particles process (P〈0.05). The mean MWD values under CS splashed particles. The ratio of the absolute value of a regression coefficient between the CS and the FTS was 1.15, being roughly correspondent with the ratio of K between the two treatments. Therefore, the parameter a of the power function between cumulative runoff and sediment yield could be an acceptable indicator for expressing the soil erodibility. In conclusion, the FTS exhibited an increase in soil erosion compared to the CS.展开更多
Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion o...Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion occur. We used a wind tunnel and simulated rainfall to study sediment yield, particle-size distribution and the fractal dimension of the sediment particles under wind and water erosion. The experiment was conducted with wind ero- sion firstly and water erosion thereafter, under three wind speeds (0, 11 and 14 m/s) and three rainfall intensities (60, 80 and 100 ram/h). The results showed that the sediment yield was positively correlated with wind speed and rain- fall intensity (P〈0.01). Wind erosion exacerbated water erosion and increased sediment yield by 7.25%-38.97% relative to the absence of wind erosion. Wind erosion changed the sediment particle distribution by influencing the micro-topography of the sloping land surface. The clay, silt and sand contents of eroded sediment were also posi- tively correlated with wind speed and rainfall intensity (P〈0.01). Wind erosion increased clay and silt contents by 0.35%-19.60% and 5.80%-21.10%, respectively, and decreased sand content by 2.40%-8.33%, relative to the absence of wind erosion. The effect of wind erosion on sediment particles became weaker with increasing rainfall intensities, which was consistent with the variation in sediment yield. However, particle-size distribution was not closely correlated with sediment yield (P〉0.05). The fractal dimension of the sediment particles was significantly different under different intensities of water erosion (P〈0.05), but no significant difference was found under wind and water erosion. The findings reported in this study implicated that both water and wind erosion should be controlled to reduce their intensifying effects, and the controlling of wind erosion could significantly reduce water erosion in this wind-water erosion crisscross region.展开更多
A comprehensive analysis is conducted based on observations on topography, tidal current, salinity, suspended sediment and bed load during the years of 1982, 1983, 1988, 1989. 1996, and 1997 in the Yangtze Estuary. Re...A comprehensive analysis is conducted based on observations on topography, tidal current, salinity, suspended sediment and bed load during the years of 1982, 1983, 1988, 1989. 1996, and 1997 in the Yangtze Estuary. Results show that the deformation of tidal waves is distinct and the sand carrying capacity is large within the mouth bar due to strong tidal currents and large volume of incoming water and sediments. Owing to both temporal and spatial variation of tidal current, deposition and erosion ore extremely active. In general a change of up to 0.1 m of bottom sediments takes place during a tidal period. The maximum siltation and erosion are around 0.2 m in a spring to neap tides cycle. The riverbed is silted during flood when there is heavy sediment load, eroded during dry season when sediment lo:ld is low. The annual average depth of erosion anti siltation on the riverbed is around 0.6 m. In particular cases, it may increase to 1.4 m to 2.4 m at some locations.展开更多
In estuarine and coastal areas, the seabed is in a constant process of dynamic change under marine conditions.Seabed sediment erosion and resuspension are important processes that safely control the geological environ...In estuarine and coastal areas, the seabed is in a constant process of dynamic change under marine conditions.Seabed sediment erosion and resuspension are important processes that safely control the geological environment. Field tripod observations conducted in the Jiaozhou Bay in China are reported, to investigate the effects of hydrodynamic conditions on the erosion and resuspension processes of the seabed. The observational results show that the maximum shear stress created by tidal currents can reach 0.35 N/m2, which is higher than the wave-induced shear stress during fair weather conditions. A seabed erosion frequently occurs during the flood tide, whereas a seabed deposition occurs during ebb tide. Waves can produce a bottom shear stress approximately equivalent to that induced by currents when the local wind reaches Force 4 with a speed of 5 m/s.When the wind reaches 7 m/s and the significant wave height reaches 26 cm, waves play a more significant role than currents in the dynamic processes of the seabed sediment resuspension and lead to a high value of turbidity that is approximately two to eight times higher than that in fair weather. These analyses clearly illustrate that periodic current-induced sediment erosion and resuspension are dominant in fair weather, whereas episodic high waves are responsible for significant sediment resuspension. Additional work is needed to establish a more thorough understanding of the mechanisms of sediment dynamics in the Jiaozhou Bay.展开更多
A new expression for calculating suspended fine-sediment deposition rate is developed based on theoretic analysis and experiments. The resulting equation is applied to simulation of fine sediment deposition in the rec...A new expression for calculating suspended fine-sediment deposition rate is developed based on theoretic analysis and experiments. The resulting equation is applied to simulation of fine sediment deposition in the reclaimed land in the Hangzhou Bay, China. The hydrodynamic environment in this area is solved by use of a long wave model, which gives the 2D-velocity field and considers bathymetric changes due to fine sediment deposition. The expression is proved convenient to use in engineering practice, and the predicted deposition rate agrees with the annual data available from field measurements from the first year to the third year after the construction of the long groin as a reclaiming method.展开更多
基金financially supported by the fellowship of the China Postdoctoral Science Foundation (2021M703466)the Natural Science Foundation of Gansu Province, China (20JR10RA231)the Natural Science Foundation of Gansu Province, China (22JR5RA050)。
文摘Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flow field around roadbeds, overlooking detailed examinations of sand particle erosion and deposition patterns near bridges and roadbeds. This study employs numerical simulations to analyze the influence of varying heights and wind speeds on sand deposition and erosion characteristics at different locations: the bridge-road transition section(side piers), middle piers, and roadbeds. The results show that the side piers, experience greater accumulation than the middle piers. Similarly, the leeward side of the roadbed witnesses more deposition compared to the windward side. Another finding reveals a reduced sand deposition length as the vertical profile, in alignment with the wind direction, moves further from the bridge abutments at the same clearance height. As wind speeds rise, there’s a decline in sand deposition and a marked increase in erosion around the side piers, middle piers and roadbeds. In conclusion, a bridge clearance that’s too low can cause intense sand damage near the side piers, while an extremely high roadbed may lead to extensive surface sand deposition. Hence, railway bridges in areas prone to sandy winds should strike a balance in clearance height. This research provides valuable guidelines for determining the most suitable bridge and roadbed heights in regions affected by wind and sand.
基金supported by the National Key Research and Development Program of China(No.2022YFC3204301).
文摘Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.
基金supported by the National Natural Science Foundation,China(41907047)the National Key Research and Development Program of China(2016YFE0202900)the Natural Science Foundation of Tianjin,China(18JCZDJC39600).
文摘Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conservation measures in ephemeral gullies.In this study,an artificial simulated confluence test and stereoscopic photogrammetry were used to analyze the distribution characteristics of erosion and deposition in ephemeral gullies protected by geocells and the effect of different confluence flows on the erosion process of ephemeral gullies.Results showed that when the confluence flow was larger,the effect of geocell was more evident,and the protection against ephemeral gully erosion was stronger.When the confluence flow rates were 0.6,1.8,2.4,and 3.0 m^(3)/h,ephemeral gully erosion decreased by 37.84%,26.09%,21.40%,and 35.45%.When the confluence flow rates were 2.4 and 3.0 m^(3)/h,the average sediment yield rate of the ephemeral gully was close to 2.14 kg/(m^(2)•min),and the protective effect of ephemeral gully erosion was enhanced.When the flow rate was higher,the surface fracture of the ephemeral gully was more serious.With an increase in confluence flow rate,the ratio of erosion to deposition increased gradually,the erosion area of ephemeral gullies was expanded,and erosion depth changed minimally.In conclusion,geocell measures changed erosion patterns by altering the rill erosion/deposition ratio,converting erosion from rill erosion to sheet erosion.
基金financially supported by the Natural Science Foundation of Gansu Province,China(22JR5RA050,20JR10RA231)the fellowship of the China Postdoctoral Science Foundation(2021M703466)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347).
文摘For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.
基金This work was supported by the National Natural Science Foundation of China[Grant Nos.41962015,52208348]the Jiangxi Provincial Natural Science Foundation[Grant No.20224BAB214064,20232BAB204083].
文摘Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion volumes.However,the impacts of soil crust conditions on the erosion of colluvial deposits with granite residual soils have only been studied to a limited extent.To address this issue,this study investigates the impacts of three soil crust conditions(i.e.,without crust,10-minute crust,and 20-minute crust)on gully morphology,rainfall infiltration,and runoff and sediment yield during slope erosion of colluvial deposits with granite residues(classified as Acrisols)in Yudu County,Ganzhou City,Jiangxi Province,China,using simulated rainfall tests and photographic methods.The results showed that as the strength of the soil crust increased,the capacity of moisture infiltration and the width and depth of the gully as well as the sediment concentration and yield ratio decreased;at the same time,the runoff ratio increased.The sediment yield in the without-crust test was found to be 1.24 and 1.43 times higher than that observed in the 10-minute crust and 20-minute crust tests,respectively.These results indicate that soil crusts can effectively prevent slope erosion and moisture infiltration,while providing valuable insights for the management of soil erosion in natural environments.
基金the National Natural Science Foundation of China(42230720,32160410,42167069)the Gansu Key Research and Development Program(22YF7FA078,GZTZ20240415)Gansu Province Forestry and Grassland Science and Technology Innovation Project(LCCX202303).
文摘The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.
基金Under the auspices of the project of Chinese Academy of Sciences No. KZCX2-31+1 种基金 The World Wide Fund of Nature No. CN008802-YZ04-1
文摘The sediments of the Dongting Lake come from four channels (one of them was closed in 1959), connected with the Yangtze River, four tributaries (Lishui, Yuanjiang, Zishui and Xiangjiang) and local area, and some of them are transported into the Yangtze River in Chenglingji, which is located at the exit of the Dongting Lake, some of them deposit into drainage system in the lake region and the rest deposit into the lake. The annual mean sediment is 166,555x104 t, of which 80% come from the four channels, 18% from the four tributaries and 2% from local area, whereas 26% of the total sediments are transported into the Yangtze River and 74% deposited into the lake and the lake drainage system. Based on topographic maps of 1974, 1988 and 1998, and the spatial analysis method with geographic information system (GIS), changes in sediment deposition and erosion are studied in this paper. By overlay analysis of 1974 and 1988, 1988 and 1998, erosion and sediments deposition areas are defined. The main conclusions are: (1) sediment rate in the lake is larger than erosion rate from 1974 to 1998. The mean deposition in the lake is 0.43 m; (2) annual sediment deposition is the same between 1974-1988 and 1988-1998, but the annual volume of deposition and erosion of 1988-1998 is bigger than that in 1974-1988; (3) before the completion of the Three Gorges Reservoir, there will be 7.82x108 m3 of sediments deposited in the lake, which would make the lake silted up by 0.33 m; (4) in the lake, the deposition area is found in the north of the east Dongting Lake, the south-west of the south Dongting Lake, and the east of the west Dongting Lake; while the eroded area is in the south of the east Dongting Lake, the middle of the south Dongting Lake, the west of the west Dongting Lake, as well as Xiangjiang and Lishui river flood channels.
基金The Fund of Tianjin Research Institute of Water Transport Engineering of China under contract Nos TKS180101,TKS170202 and TKS150207the National Natural Science Foundation of China under contract Nos 51509120 and 51779112+1 种基金the Shanghai Science and Technology Committee under contract No.15DZ1202300the Tianjin Science and Technology Plan Innovation Platform and Talent Special Fund Project under contract No.16PTSYJC00190
文摘The seabed scouring and silting are very important to the construction of port and waterway engineering. Seabed deposition and erosion change is complicated due to the influence of sediment supply, human activities and other factors. The Yangshan Deepwater Port is the new deep water harbor, which is an important part of the Shanghai International Shipping Service Center. Its construction has received much attention. At present, the water depth from the 1 st to the 3 rd harbor district is currently suitable under regular dredging and tidal current action. The fourth harbor district will be built in the world’s largest fully-automated deep water wharf. In the study, bathymetry change of the entire sea area of the Yangshan Deepwater Port and the 4 th harbor district(i.e.,Phase IV project) waters were analyzed quantitatively using multiyear bathymetric, hydrological and sediment data. The results show that from 1998 to 2010, seabed changes are characterized by large volumes of erosion and sedimentation, which the southern part was deposited and the northern part was eroded in the inner harbor waters, but the seabed of the Kezhushan inlet was eroded. Seabed changes of Phase IV project waters generally show a scour tendency in recent few years with the annual scour rate about 0.7 m. Among the many factors, the existence of Kezhushan inlet and its influence of the western water flow play an important positive role in water depth changes under the ebb tide action.
基金Under the auspices of Special Major Science and Technology Projects in Xinjiang Uygur Autonomous Region(No.201130106-1)Public Sector(Meteorology)Research Project(No.GYHY201106025)Doctoral Station Supporting Foundation for Geography of Xinjiang Normal University and Open Project of Xinjiang Lake Environment and Resources Key Laboratory of Arid Zone(No.XJDX0909-2013-08)
文摘The oasis-desert ecotone is a fragile ecological zone that is affected both by oasis and desert conditions. To understand the impact of the differences in wind power, and the influence of wind erosion and deposition on the ecotone, meteorological data and con- temporaneous wind erosion and deposition data were collected on the southern margin of Tarim Basin with serious sand-blown hazards. The wind velocity, average wind velocity, sand drift potential (DP), resultant sand drift potential (RDP), and sand transportation rate decrease significantly and successively across four landscape types with increasing vegetation coverage (VC). Flat surfaces and areas of shifting sandy ground experience intense wind erosion with fast movement of mobile sand dunes; semi-fixed sand areas experience ex- tensive wind deposition but only slight wind erosion; and fixed sand areas experience only slight wind erosion and deposition. Volume of wind erosion on bare newly reclaimed farmland is up to 6.96 times that of bare shifting sandy ground. Wind erosion volume per unit area and VC follow an exponential function relationship in natural conditions, while wind deposition volume per unit area does not conform to any functions which has close relationship with vary topography and arrangement patterns of vegetation besides for VC. The results indicate that the volume of wind erosion has a close correlation with VC, and different types and distribution patterns of topog- raphy and vegetation also profoundly influence the wind deposition volume in the field, and underground water tables in different land- scape types control the plant community distribution. Keywords: wind erosion; wind deposition; oasis-desert ecotone; vegetation coverage (VC); topography; Cele County
基金This research was supported by the National Natural Science Foundation of China(42171083,41871016)the Natural Science Foundation of Gansu Province,China(22JR5RA066).
文摘The Dunhuang–Golmud railway passes through different deserts in arid areas,especially drifting-sand desert and sandy-gravel Gobi.The near-surface wind environment and wind-sand transport process vary due to different external factors,such as topography,vegetation,and regional climate,resulting in evident spatial differences in surface erosion and deposition.Consequently,the measures for preventing wind-sand hazards will differ.However,the mechanism and control theory of sand damage remain poorly understood.In this study,we used meteorological observation,three-dimensional(3D)laser scanning,and grain-size analysis to compare and evaluate the spatial distribution of wind conditions,sand erosion and deposition patterns,and grain composition in the drifting-sand desert and sandy-gravel Gobi along the Dunhuang–Golmud railway in China.Results show that the annual mean wind speed,the frequency of sand-driving wind,and the drift potential of sandy-gravel Gobi are higher than those of drifting-sand desert,indicating a greater wind strength in the sandy-gravel Gobi,which exhibits spatial heterogeneity in wind conditions.The major sediment components in sandy-gravel Gobi are very fine sand,fine sand,and medium sand,and that in drifting-sand desert are very fine sand and fine sand.We found that the sediment in the sandy-gravel Gobi is coarser than that in the drifting-sand desert based on mean grain size and sediment component.The spatial distributions of sand erosion and deposition in the sandy-gravel Gobi and drifting-sand desert are consistent,with sand deposition mainly on the west side of the railway and sand erosion on the east side of the railway.The area of sand deposition in the drifting-sand desert accounts for 75.83%of the total area,with a mean deposition thickness of 0.032 m;while the area of sand deposition in the sandy-gravel Gobi accounts for 65.31%of the total area,with a mean deposition thickness of 0.028 m,indicating greater deposition amounts in the drifting-sand desert due to the presence of more fine sediment components.However,the sand deposition is more concentrated with a greater thickness on the embankment and track in the sandy-gravel Gobi and is dispersed with a uniform thickness in the drifting-sand desert.The sand deposition on the track of the sandy-gravel Gobi mainly comes from the east side of the railway.The results of this study are helpful in developing the preventive measures and determining appropriate selection and layout measures for sand control.
基金supported by National Natural Science Foundation of China(No.10775138)
文摘Abstract Dedicated experiments in the HT-7 tokamak were performed to investigate the in- fluence of erosion and deposition on the mirror samples. The first mirror (FM) samples made of polyerystalline (PC) stainless steel (SS), molybdenum (Mo) and tungsten (W) were fixed on a holder at an angle of 45° with respect to the horizontal plane and set at different locations with different connection lengths along the magnetic field. The optical reflectivity of the first mirror was measured by a spectrophotometer before and after plasma exposure. It was found that the surface morphology and specular reflectivity of the mirror samples after the exposure were different with respect to the different distances from the mirror surface to the last closed flux surface (LCFS) of the plasma in the tokamak. It was also found that shortening the connection length before the mirror surface would weaken the influence of the plasma erosion and impurity deposition on the mirror surface. In order to maintain the optical characteristics of the mirror surface, it is necessary to adopt the in-situ cleaning and mirror protection techniques.
基金Supported by the National Magnetic Confinement Fusion Science Programof China(Nos.2013GB107004 and 2013GB105003)National Natural Science foundation of China(Nos.11375010,11675218 and 11005125)the Sino-German Center for Research Promotion under contract NoGZ769
文摘e movable limiter at the mid-plane of the Experimental Advanced Superconducting Tokamak (EAST) with carbon coatings on the surface was exposed to edge plasma to study the material erosion and re-deposition.After the experiments,the carbon erosion and re-deposition is modelled using the 3D Monte Carlo code ERO.The geometry of the movable limiter,3D configuration of the plasma parameters and electromagnetic fields under both limiter and divertor configurations have been implemented into the code.In the simulations,the main uncertain parameters such as carbon concentration ρc in the background plasma and cross-field transport coefficient D⊥ in the vicinity of surface according to the ‘funneling model',have been studied in comparison with experiments.The parameter ρc mainly influences the net erosion and deposition profiles of the two sides of the movable limiter,while D ⊥ mostly changes the profiles on the top surface.
基金financially supported by the 973Program(No.2013CB956402)National Natural Science Foundation of China(No.41225015)
文摘Tracing erosion flux within a single catchment is one of the major targets for the Earth's Critical Zone science. The sedimentary succession in landslide-dammed reservoirs within the Chinese Loess Plateau(CLP) serves as a valuable archive of past erosion history. Deposition couplets and annual freeze–thaw layers were firstly identified for the sedimentary succession of the Jingbian reservoir on the northern CLP with high-resolution XRF core scanning. The deposition couplets in the reservoir since 1963 A.D. were further dated with ^(137) Cs activity. We found consistent one-to-one correspondence between couplet specific sediment yield and storm intensity. The reconstructed soil erosion history highlights the control of storm intensity and frequency on loess erosion on the northern CLP in the past hundreds of years.
基金funded by Jiangsu Ocean University Graduate Research and Practice Innovation Program(KYCX2021-040).
文摘Taking Yancheng Nature Reserve Salt Marsh as the research object,the remote sensing images from 2005 to 2020 were interpreted by using remote sensing and geographic information system technology.In this paper,the temporal and spatial variation characteristics of erosion and deposition in the front edge of salt marsh wetland were analyzed.The influence of sea level rise on the annual change of salt marsh area was analyzed.The characteristics of flow and sediment movement in salt marsh and the causes of erosion and deposition in front of salt marsh were analyzed.The results showed that:(1)During 2005-2007,the sea level was relatively low,and Spartina alterniflora in salt marsh expanded to the sea.Since 2007,the front edge of salt marsh wetland has coexisted with erosion and deposition.From 2008 to 2010,the front edge of salt marsh wetland once again showed a trend of comprehensive deposition to the sea side.From 2010 to 2012,the erosion of salt marsh wetland was serious.From 2012 to 2020,the front edge of salt marsh wetland in the range of 9 km south of Xinyang estuary was eroded.(2)The correlation analysis was carried out between the area of salt marsh wetland and sea level rise.Spartina alterniflora is easily affected by sea level change,owing to it having a low ecological niche.With the rise of sea level,the area of salt marsh has been decreasing since 2013.(3)In the front sea area of salt marsh wetland,the maximum velocity of the ebb and flood can reach the threshold velocity during the spring tide.The sediment starts to move at water depth of 10 m under wave actions.Owing to wave stirs up sediment and current transports the sediment,resuspended sediment causes the erosion of marsh-edge scarps.
基金National Basic Research Program of China,No.2007CB407201National Key Technology R&D Program,No.2006BAB06B01-06Science and Technique Development Foundation of YRIHR,No.200603
文摘By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass coverage degrees of 0, 30%, 50%, 70%, 90%, three spatial locations of grass (upslope, mid-slope, low-slope) and two water inflow rates of 3.2 L/min, 5.2 L/min were applied to a 0.5 by 7 m soil bed in scouring experiments. Results showed that the sediment yield decreased with the increase of grass coverage degree at 3.2 L/min water inflow rate in scouring experiments and the sediment yield with different grass locations on the sloping surface was in the order of upper 〉 middle 〉 lower. At 5.2 L/min water inflow rate, the differences of sediment yield among various grass coverage degrees were increased, whereas the changeable tendency of sediment yield with different grass locations on the whole sloping surface was not very obvious. The proportion of sediment yield from the gully side increased in an exponential relationship with the increase of grass coverage degree When the grass was located on the lower position of hillslope, the influence for accelerating gully erosion is the greatest.
基金supported by the National Basic Research Program of China(2016YFC040240X)the National Natural Science Foundation of China(41471226,41330858)the Independent Research Foundation of State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area(2016KFKT-8)
文摘The freeze-thaw (FT) processes affect an area of 46.3% in China. It is essential for soil and water conservation and ecological construction to elucidate the mechanisms of the FF processes and its associated soil erosion processes. In this research, we designed the control simulation experiments to promote the understanding of FT-water combined erosion processes. The results showed that the runoff of freeze-thaw slope (FTS) decreased by 8% compared to the control slope (CS), and the total sediment yield of the FTS was 1.10 times that of the CS. The sediment yield rate from the FTS was significantly greater than that from the CS after 9 min of runoff (P〈0.01). Both in FTS and CS treatments, the relationships between cumulative runoff and sediment yield can be fitted well with power functions (R2〉0.98, P〈0.01). Significant differences in the mean weight diameter (MWD) values of particles were between the CS and the FTS treatments in the erosion were smaller than those under FTS for both washed and observed for washed particles and splashed particles process (P〈0.05). The mean MWD values under CS splashed particles. The ratio of the absolute value of a regression coefficient between the CS and the FTS was 1.15, being roughly correspondent with the ratio of K between the two treatments. Therefore, the parameter a of the power function between cumulative runoff and sediment yield could be an acceptable indicator for expressing the soil erodibility. In conclusion, the FTS exhibited an increase in soil erosion compared to the CS.
基金financially supported by the Special Program for Basic Research of the Ministry of Science and Technology, China (2014FY210100)the National Natural Science Foundation of China (41171422, 41271298)the West Light Foundation of the Chinese Academy of Sciences
文摘Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion occur. We used a wind tunnel and simulated rainfall to study sediment yield, particle-size distribution and the fractal dimension of the sediment particles under wind and water erosion. The experiment was conducted with wind ero- sion firstly and water erosion thereafter, under three wind speeds (0, 11 and 14 m/s) and three rainfall intensities (60, 80 and 100 ram/h). The results showed that the sediment yield was positively correlated with wind speed and rain- fall intensity (P〈0.01). Wind erosion exacerbated water erosion and increased sediment yield by 7.25%-38.97% relative to the absence of wind erosion. Wind erosion changed the sediment particle distribution by influencing the micro-topography of the sloping land surface. The clay, silt and sand contents of eroded sediment were also posi- tively correlated with wind speed and rainfall intensity (P〈0.01). Wind erosion increased clay and silt contents by 0.35%-19.60% and 5.80%-21.10%, respectively, and decreased sand content by 2.40%-8.33%, relative to the absence of wind erosion. The effect of wind erosion on sediment particles became weaker with increasing rainfall intensities, which was consistent with the variation in sediment yield. However, particle-size distribution was not closely correlated with sediment yield (P〉0.05). The fractal dimension of the sediment particles was significantly different under different intensities of water erosion (P〈0.05), but no significant difference was found under wind and water erosion. The findings reported in this study implicated that both water and wind erosion should be controlled to reduce their intensifying effects, and the controlling of wind erosion could significantly reduce water erosion in this wind-water erosion crisscross region.
基金This study is supported by the National Natural Science Foundation of China(Grant No.49736220)
文摘A comprehensive analysis is conducted based on observations on topography, tidal current, salinity, suspended sediment and bed load during the years of 1982, 1983, 1988, 1989. 1996, and 1997 in the Yangtze Estuary. Results show that the deformation of tidal waves is distinct and the sand carrying capacity is large within the mouth bar due to strong tidal currents and large volume of incoming water and sediments. Owing to both temporal and spatial variation of tidal current, deposition and erosion ore extremely active. In general a change of up to 0.1 m of bottom sediments takes place during a tidal period. The maximum siltation and erosion are around 0.2 m in a spring to neap tides cycle. The riverbed is silted during flood when there is heavy sediment load, eroded during dry season when sediment lo:ld is low. The annual average depth of erosion anti siltation on the riverbed is around 0.6 m. In particular cases, it may increase to 1.4 m to 2.4 m at some locations.
基金The National Natural Science Foundation of China under contract Nos 41402253,41427803 and 41372287the Project of Qingdao National Laboratory for Marine Science and Technology under contract No.QNLM2016ORP0110
文摘In estuarine and coastal areas, the seabed is in a constant process of dynamic change under marine conditions.Seabed sediment erosion and resuspension are important processes that safely control the geological environment. Field tripod observations conducted in the Jiaozhou Bay in China are reported, to investigate the effects of hydrodynamic conditions on the erosion and resuspension processes of the seabed. The observational results show that the maximum shear stress created by tidal currents can reach 0.35 N/m2, which is higher than the wave-induced shear stress during fair weather conditions. A seabed erosion frequently occurs during the flood tide, whereas a seabed deposition occurs during ebb tide. Waves can produce a bottom shear stress approximately equivalent to that induced by currents when the local wind reaches Force 4 with a speed of 5 m/s.When the wind reaches 7 m/s and the significant wave height reaches 26 cm, waves play a more significant role than currents in the dynamic processes of the seabed sediment resuspension and lead to a high value of turbidity that is approximately two to eight times higher than that in fair weather. These analyses clearly illustrate that periodic current-induced sediment erosion and resuspension are dominant in fair weather, whereas episodic high waves are responsible for significant sediment resuspension. Additional work is needed to establish a more thorough understanding of the mechanisms of sediment dynamics in the Jiaozhou Bay.
文摘A new expression for calculating suspended fine-sediment deposition rate is developed based on theoretic analysis and experiments. The resulting equation is applied to simulation of fine sediment deposition in the reclaimed land in the Hangzhou Bay, China. The hydrodynamic environment in this area is solved by use of a long wave model, which gives the 2D-velocity field and considers bathymetric changes due to fine sediment deposition. The expression is proved convenient to use in engineering practice, and the predicted deposition rate agrees with the annual data available from field measurements from the first year to the third year after the construction of the long groin as a reclaiming method.