期刊文献+
共找到3,624篇文章
< 1 2 182 >
每页显示 20 50 100
Numerical simulation of flow field deposition and erosion characteristics around bridge-road transition section
1
作者 ZHANG Kai WANG Zhenghui +3 位作者 WANG Tao TIAN Jianjin ZHANG Hailong LIU Yonghe 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1491-1508,共18页
Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flo... Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flow field around roadbeds, overlooking detailed examinations of sand particle erosion and deposition patterns near bridges and roadbeds. This study employs numerical simulations to analyze the influence of varying heights and wind speeds on sand deposition and erosion characteristics at different locations: the bridge-road transition section(side piers), middle piers, and roadbeds. The results show that the side piers, experience greater accumulation than the middle piers. Similarly, the leeward side of the roadbed witnesses more deposition compared to the windward side. Another finding reveals a reduced sand deposition length as the vertical profile, in alignment with the wind direction, moves further from the bridge abutments at the same clearance height. As wind speeds rise, there’s a decline in sand deposition and a marked increase in erosion around the side piers, middle piers and roadbeds. In conclusion, a bridge clearance that’s too low can cause intense sand damage near the side piers, while an extremely high roadbed may lead to extensive surface sand deposition. Hence, railway bridges in areas prone to sandy winds should strike a balance in clearance height. This research provides valuable guidelines for determining the most suitable bridge and roadbed heights in regions affected by wind and sand. 展开更多
关键词 SANDSTORM Flow field Bridge-road transition section sedimentation erosion Numerical simulation
下载PDF
Landsat Image-Based Spatiotemporal Variation Analysis of Erosion and Deposition off the Qingshuigou of the Yellow River Delta from 1984 to 2021
2
作者 DONG Sheng LI Songda TAO Shanshan 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1173-1184,共12页
Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological prote... Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers. 展开更多
关键词 Yellow River Delta COASTLINE erosion and deposition remote sensing wavelet analysis
下载PDF
Sediment yield and erosion–deposition distribution characteristics in ephemeral gullies in black soil areas under geocell protection 被引量:1
3
作者 WANG Xinyu SU Yu +4 位作者 SUN Yiqiu ZHANG Yan GUAN Yinghui WANG Zhirong WU Hailong 《Journal of Arid Land》 SCIE CSCD 2023年第2期180-190,共11页
Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conser... Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conservation measures in ephemeral gullies.In this study,an artificial simulated confluence test and stereoscopic photogrammetry were used to analyze the distribution characteristics of erosion and deposition in ephemeral gullies protected by geocells and the effect of different confluence flows on the erosion process of ephemeral gullies.Results showed that when the confluence flow was larger,the effect of geocell was more evident,and the protection against ephemeral gully erosion was stronger.When the confluence flow rates were 0.6,1.8,2.4,and 3.0 m^(3)/h,ephemeral gully erosion decreased by 37.84%,26.09%,21.40%,and 35.45%.When the confluence flow rates were 2.4 and 3.0 m^(3)/h,the average sediment yield rate of the ephemeral gully was close to 2.14 kg/(m^(2)•min),and the protective effect of ephemeral gully erosion was enhanced.When the flow rate was higher,the surface fracture of the ephemeral gully was more serious.With an increase in confluence flow rate,the ratio of erosion to deposition increased gradually,the erosion area of ephemeral gullies was expanded,and erosion depth changed minimally.In conclusion,geocell measures changed erosion patterns by altering the rill erosion/deposition ratio,converting erosion from rill erosion to sheet erosion. 展开更多
关键词 GEOCELL erosion and deposition distribution runoff and sediment production ephemeral gully soil conservation
下载PDF
Numerical simulation on sand sedimentation and erosion characteristics around HDPE sheet sand barrier under different wind angles 被引量:1
4
作者 ZHANG Kai ZHANG Peili +3 位作者 ZHANG Hailong TIAN Jianjin WANG Zhenghui XIAO Jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第2期538-554,共17页
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t... For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area. 展开更多
关键词 Multi-wind direction HDPE sheet sand barrier Numerical simulation Windproof efficiency sedimentation erosion
下载PDF
Effects of soil crust on the collapsing erosion of colluvial deposits with granite residual soil
5
作者 LIU Weiping ZENG Bohan +1 位作者 WANG Tianhuan DUAN Junyi 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2579-2591,共13页
Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion vo... Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion volumes.However,the impacts of soil crust conditions on the erosion of colluvial deposits with granite residual soils have only been studied to a limited extent.To address this issue,this study investigates the impacts of three soil crust conditions(i.e.,without crust,10-minute crust,and 20-minute crust)on gully morphology,rainfall infiltration,and runoff and sediment yield during slope erosion of colluvial deposits with granite residues(classified as Acrisols)in Yudu County,Ganzhou City,Jiangxi Province,China,using simulated rainfall tests and photographic methods.The results showed that as the strength of the soil crust increased,the capacity of moisture infiltration and the width and depth of the gully as well as the sediment concentration and yield ratio decreased;at the same time,the runoff ratio increased.The sediment yield in the without-crust test was found to be 1.24 and 1.43 times higher than that observed in the 10-minute crust and 20-minute crust tests,respectively.These results indicate that soil crusts can effectively prevent slope erosion and moisture infiltration,while providing valuable insights for the management of soil erosion in natural environments. 展开更多
关键词 Granite residual soil Colluvial deposits Slope erosion Soil crust sediment yield
下载PDF
Utilizing sediment grain size characteristics to assess the effectiveness of clay–sand barriers in reducing aeolian erosion in Minqin desert area,China
6
作者 SONG Dacheng ZHAO Wenzhi +5 位作者 LI Guangyu WEI Lemin WANG Lide YANG Jingyi WU Hao MA Quanlin 《Journal of Arid Land》 SCIE CSCD 2024年第5期668-684,共17页
The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand b... The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas. 展开更多
关键词 clay-sand barriers sediment grain size grain size distribution aeolian erosion windbreak and sand fixation Minqin desert area
下载PDF
Analysis of deposition and erosion of Dongting Lake by GIS 被引量:2
7
作者 Gao Jun-feng Zhang Chen +1 位作者 Jiang Jia-hu Huang Qun 《Journal of Geographical Sciences》 SCIE CSCD 2001年第4期22-30,共9页
The sediments of the Dongting Lake come from four channels (one of them was closed in 1959), connected with the Yangtze River, four tributaries (Lishui, Yuanjiang, Zishui and Xiangjiang) and local area, and some of th... The sediments of the Dongting Lake come from four channels (one of them was closed in 1959), connected with the Yangtze River, four tributaries (Lishui, Yuanjiang, Zishui and Xiangjiang) and local area, and some of them are transported into the Yangtze River in Chenglingji, which is located at the exit of the Dongting Lake, some of them deposit into drainage system in the lake region and the rest deposit into the lake. The annual mean sediment is 166,555x104 t, of which 80% come from the four channels, 18% from the four tributaries and 2% from local area, whereas 26% of the total sediments are transported into the Yangtze River and 74% deposited into the lake and the lake drainage system. Based on topographic maps of 1974, 1988 and 1998, and the spatial analysis method with geographic information system (GIS), changes in sediment deposition and erosion are studied in this paper. By overlay analysis of 1974 and 1988, 1988 and 1998, erosion and sediments deposition areas are defined. The main conclusions are: (1) sediment rate in the lake is larger than erosion rate from 1974 to 1998. The mean deposition in the lake is 0.43 m; (2) annual sediment deposition is the same between 1974-1988 and 1988-1998, but the annual volume of deposition and erosion of 1988-1998 is bigger than that in 1974-1988; (3) before the completion of the Three Gorges Reservoir, there will be 7.82x108 m3 of sediments deposited in the lake, which would make the lake silted up by 0.33 m; (4) in the lake, the deposition area is found in the north of the east Dongting Lake, the south-west of the south Dongting Lake, and the east of the west Dongting Lake; while the eroded area is in the south of the east Dongting Lake, the middle of the south Dongting Lake, the west of the west Dongting Lake, as well as Xiangjiang and Lishui river flood channels. 展开更多
关键词 Dongting Lake sediment deposition and erosion spatial distribution GIS
下载PDF
Seabed deposition and erosion change and influence factors in the Yangshan Deepwater Port over the years 被引量:2
8
作者 Shuhua Zuo Hualiang Xie +4 位作者 Xiaoming Ying Cheng Cui Yuxin Huang Huaiyuan Li Mingxiao Xie 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第7期96-106,共11页
The seabed scouring and silting are very important to the construction of port and waterway engineering. Seabed deposition and erosion change is complicated due to the influence of sediment supply, human activities an... The seabed scouring and silting are very important to the construction of port and waterway engineering. Seabed deposition and erosion change is complicated due to the influence of sediment supply, human activities and other factors. The Yangshan Deepwater Port is the new deep water harbor, which is an important part of the Shanghai International Shipping Service Center. Its construction has received much attention. At present, the water depth from the 1 st to the 3 rd harbor district is currently suitable under regular dredging and tidal current action. The fourth harbor district will be built in the world’s largest fully-automated deep water wharf. In the study, bathymetry change of the entire sea area of the Yangshan Deepwater Port and the 4 th harbor district(i.e.,Phase IV project) waters were analyzed quantitatively using multiyear bathymetric, hydrological and sediment data. The results show that from 1998 to 2010, seabed changes are characterized by large volumes of erosion and sedimentation, which the southern part was deposited and the northern part was eroded in the inner harbor waters, but the seabed of the Kezhushan inlet was eroded. Seabed changes of Phase IV project waters generally show a scour tendency in recent few years with the annual scour rate about 0.7 m. Among the many factors, the existence of Kezhushan inlet and its influence of the western water flow play an important positive role in water depth changes under the ebb tide action. 展开更多
关键词 Yangshan Deepwater Port phase IV project water and sediment environment seabed deposition and erosion change diversion dike
下载PDF
Characteristics of Wind Erosion and Deposition in Oasis-desert Ecotone in Southern Margin of Tarim Basin,China 被引量:7
9
作者 MAO Donglei LEI Jiaqiang +3 位作者 ZENG Fanjiang RAHMUTULLA Zaynulla WANG Cui ZHOU Jie 《Chinese Geographical Science》 SCIE CSCD 2014年第6期658-673,共16页
The oasis-desert ecotone is a fragile ecological zone that is affected both by oasis and desert conditions. To understand the impact of the differences in wind power, and the influence of wind erosion and deposition o... The oasis-desert ecotone is a fragile ecological zone that is affected both by oasis and desert conditions. To understand the impact of the differences in wind power, and the influence of wind erosion and deposition on the ecotone, meteorological data and con- temporaneous wind erosion and deposition data were collected on the southern margin of Tarim Basin with serious sand-blown hazards. The wind velocity, average wind velocity, sand drift potential (DP), resultant sand drift potential (RDP), and sand transportation rate decrease significantly and successively across four landscape types with increasing vegetation coverage (VC). Flat surfaces and areas of shifting sandy ground experience intense wind erosion with fast movement of mobile sand dunes; semi-fixed sand areas experience ex- tensive wind deposition but only slight wind erosion; and fixed sand areas experience only slight wind erosion and deposition. Volume of wind erosion on bare newly reclaimed farmland is up to 6.96 times that of bare shifting sandy ground. Wind erosion volume per unit area and VC follow an exponential function relationship in natural conditions, while wind deposition volume per unit area does not conform to any functions which has close relationship with vary topography and arrangement patterns of vegetation besides for VC. The results indicate that the volume of wind erosion has a close correlation with VC, and different types and distribution patterns of topog- raphy and vegetation also profoundly influence the wind deposition volume in the field, and underground water tables in different land- scape types control the plant community distribution. Keywords: wind erosion; wind deposition; oasis-desert ecotone; vegetation coverage (VC); topography; Cele County 展开更多
关键词 wind erosion wind deposition oasis-desert ecotone vegetation coverage (VC) TOPOGRAPHY Cele County
下载PDF
Wind dynamic environment and wind-sand erosion and deposition processes on different surfaces along the Dunhuang–Golmud railway,China 被引量:2
10
作者 ZHANG Hongxue ZHANG Kecun +1 位作者 AN Zhishan YU Yanping 《Journal of Arid Land》 SCIE CSCD 2023年第4期393-406,共14页
The Dunhuang–Golmud railway passes through different deserts in arid areas,especially drifting-sand desert and sandy-gravel Gobi.The near-surface wind environment and wind-sand transport process vary due to different... The Dunhuang–Golmud railway passes through different deserts in arid areas,especially drifting-sand desert and sandy-gravel Gobi.The near-surface wind environment and wind-sand transport process vary due to different external factors,such as topography,vegetation,and regional climate,resulting in evident spatial differences in surface erosion and deposition.Consequently,the measures for preventing wind-sand hazards will differ.However,the mechanism and control theory of sand damage remain poorly understood.In this study,we used meteorological observation,three-dimensional(3D)laser scanning,and grain-size analysis to compare and evaluate the spatial distribution of wind conditions,sand erosion and deposition patterns,and grain composition in the drifting-sand desert and sandy-gravel Gobi along the Dunhuang–Golmud railway in China.Results show that the annual mean wind speed,the frequency of sand-driving wind,and the drift potential of sandy-gravel Gobi are higher than those of drifting-sand desert,indicating a greater wind strength in the sandy-gravel Gobi,which exhibits spatial heterogeneity in wind conditions.The major sediment components in sandy-gravel Gobi are very fine sand,fine sand,and medium sand,and that in drifting-sand desert are very fine sand and fine sand.We found that the sediment in the sandy-gravel Gobi is coarser than that in the drifting-sand desert based on mean grain size and sediment component.The spatial distributions of sand erosion and deposition in the sandy-gravel Gobi and drifting-sand desert are consistent,with sand deposition mainly on the west side of the railway and sand erosion on the east side of the railway.The area of sand deposition in the drifting-sand desert accounts for 75.83%of the total area,with a mean deposition thickness of 0.032 m;while the area of sand deposition in the sandy-gravel Gobi accounts for 65.31%of the total area,with a mean deposition thickness of 0.028 m,indicating greater deposition amounts in the drifting-sand desert due to the presence of more fine sediment components.However,the sand deposition is more concentrated with a greater thickness on the embankment and track in the sandy-gravel Gobi and is dispersed with a uniform thickness in the drifting-sand desert.The sand deposition on the track of the sandy-gravel Gobi mainly comes from the east side of the railway.The results of this study are helpful in developing the preventive measures and determining appropriate selection and layout measures for sand control. 展开更多
关键词 surface erosion and deposition wind environment three-dimensional(3D)laser scanner drift potential grain-size characteristic Dunhuang–Golmud railway
下载PDF
Influence of Erosion and Deposition on Metallic First Mirror in HT-7 Tokamak
11
作者 陈聚 鄢容 陈俊凌 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第8期708-711,共4页
Abstract Dedicated experiments in the HT-7 tokamak were performed to investigate the in- fluence of erosion and deposition on the mirror samples. The first mirror (FM) samples made of polyerystalline (PC) stainles... Abstract Dedicated experiments in the HT-7 tokamak were performed to investigate the in- fluence of erosion and deposition on the mirror samples. The first mirror (FM) samples made of polyerystalline (PC) stainless steel (SS), molybdenum (Mo) and tungsten (W) were fixed on a holder at an angle of 45° with respect to the horizontal plane and set at different locations with different connection lengths along the magnetic field. The optical reflectivity of the first mirror was measured by a spectrophotometer before and after plasma exposure. It was found that the surface morphology and specular reflectivity of the mirror samples after the exposure were different with respect to the different distances from the mirror surface to the last closed flux surface (LCFS) of the plasma in the tokamak. It was also found that shortening the connection length before the mirror surface would weaken the influence of the plasma erosion and impurity deposition on the mirror surface. In order to maintain the optical characteristics of the mirror surface, it is necessary to adopt the in-situ cleaning and mirror protection techniques. 展开更多
关键词 first mirror erosion deposition REFLECTIVITY surface morphology
下载PDF
Modelling of carbon erosion and re-deposition for the EAST movable limiter
12
作者 谢海 丁锐 +1 位作者 陈俊凌 孙继忠 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第4期112-119,共8页
e movable limiter at the mid-plane of the Experimental Advanced Superconducting Tokamak (EAST) with carbon coatings on the surface was exposed to edge plasma to study the material erosion and re-deposition.After the... e movable limiter at the mid-plane of the Experimental Advanced Superconducting Tokamak (EAST) with carbon coatings on the surface was exposed to edge plasma to study the material erosion and re-deposition.After the experiments,the carbon erosion and re-deposition is modelled using the 3D Monte Carlo code ERO.The geometry of the movable limiter,3D configuration of the plasma parameters and electromagnetic fields under both limiter and divertor configurations have been implemented into the code.In the simulations,the main uncertain parameters such as carbon concentration ρc in the background plasma and cross-field transport coefficient D⊥ in the vicinity of surface according to the ‘funneling model',have been studied in comparison with experiments.The parameter ρc mainly influences the net erosion and deposition profiles of the two sides of the movable limiter,while D ⊥ mostly changes the profiles on the top surface. 展开更多
关键词 MODELLING EAST LIMITER erosion and deposition
下载PDF
Dated deposition couplets link catchment erosion flux with storm discharge on the Chinese Loess Plateau
13
作者 Zhangdong Jin Xiaqing Wang Xinbao Zhang 《Acta Geochimica》 EI CAS CSCD 2017年第3期548-551,共4页
Tracing erosion flux within a single catchment is one of the major targets for the Earth's Critical Zone science. The sedimentary succession in landslide-dammed reservoirs within the Chinese Loess Plateau(CLP) ser... Tracing erosion flux within a single catchment is one of the major targets for the Earth's Critical Zone science. The sedimentary succession in landslide-dammed reservoirs within the Chinese Loess Plateau(CLP) serves as a valuable archive of past erosion history. Deposition couplets and annual freeze–thaw layers were firstly identified for the sedimentary succession of the Jingbian reservoir on the northern CLP with high-resolution XRF core scanning. The deposition couplets in the reservoir since 1963 A.D. were further dated with ^(137) Cs activity. We found consistent one-to-one correspondence between couplet specific sediment yield and storm intensity. The reconstructed soil erosion history highlights the control of storm intensity and frequency on loess erosion on the northern CLP in the past hundreds of years. 展开更多
关键词 Landslide-dammed reservoir on the CLP deposition couplet XRF core scanning ^137Cs activity erosion flux
下载PDF
Analyses on Temporal and Spatial Variation Characteristics of Erosion and Deposition in the Front Edge of Salt Marsh Wetland
14
作者 Wenjin Zhu Xue Li +1 位作者 Mei Zhang Xiaotian Dong 《Journal of Environmental Science and Engineering(B)》 2022年第5期213-224,共12页
Taking Yancheng Nature Reserve Salt Marsh as the research object,the remote sensing images from 2005 to 2020 were interpreted by using remote sensing and geographic information system technology.In this paper,the temp... Taking Yancheng Nature Reserve Salt Marsh as the research object,the remote sensing images from 2005 to 2020 were interpreted by using remote sensing and geographic information system technology.In this paper,the temporal and spatial variation characteristics of erosion and deposition in the front edge of salt marsh wetland were analyzed.The influence of sea level rise on the annual change of salt marsh area was analyzed.The characteristics of flow and sediment movement in salt marsh and the causes of erosion and deposition in front of salt marsh were analyzed.The results showed that:(1)During 2005-2007,the sea level was relatively low,and Spartina alterniflora in salt marsh expanded to the sea.Since 2007,the front edge of salt marsh wetland has coexisted with erosion and deposition.From 2008 to 2010,the front edge of salt marsh wetland once again showed a trend of comprehensive deposition to the sea side.From 2010 to 2012,the erosion of salt marsh wetland was serious.From 2012 to 2020,the front edge of salt marsh wetland in the range of 9 km south of Xinyang estuary was eroded.(2)The correlation analysis was carried out between the area of salt marsh wetland and sea level rise.Spartina alterniflora is easily affected by sea level change,owing to it having a low ecological niche.With the rise of sea level,the area of salt marsh has been decreasing since 2013.(3)In the front sea area of salt marsh wetland,the maximum velocity of the ebb and flood can reach the threshold velocity during the spring tide.The sediment starts to move at water depth of 10 m under wave actions.Owing to wave stirs up sediment and current transports the sediment,resuspended sediment causes the erosion of marsh-edge scarps. 展开更多
关键词 Salt marsh wetland remote sensing deposition erosion sea level rise wave-current action
下载PDF
Effect of grass coverage on sediment yield in the hillslope-gully side erosion system 被引量:15
15
作者 李勉 姚文艺 +2 位作者 丁文峰 杨剑锋 陈江南 《Journal of Geographical Sciences》 SCIE CSCD 2009年第3期321-330,共10页
By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass ... By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass coverage degrees of 0, 30%, 50%, 70%, 90%, three spatial locations of grass (upslope, mid-slope, low-slope) and two water inflow rates of 3.2 L/min, 5.2 L/min were applied to a 0.5 by 7 m soil bed in scouring experiments. Results showed that the sediment yield decreased with the increase of grass coverage degree at 3.2 L/min water inflow rate in scouring experiments and the sediment yield with different grass locations on the sloping surface was in the order of upper 〉 middle 〉 lower. At 5.2 L/min water inflow rate, the differences of sediment yield among various grass coverage degrees were increased, whereas the changeable tendency of sediment yield with different grass locations on the whole sloping surface was not very obvious. The proportion of sediment yield from the gully side increased in an exponential relationship with the increase of grass coverage degree When the grass was located on the lower position of hillslope, the influence for accelerating gully erosion is the greatest. 展开更多
关键词 grass coverage hillslope-gully side erosion system scouring experiment sediment yield
下载PDF
Effects of freeze-thaw on soil erosion processes and sediment selectivity under simulated rainfall 被引量:10
16
作者 WANG Tian LI Peng +5 位作者 REN Zongping XU Guoce LI Zhanbin YANG Yuanyuan TANG Shanshan YAO Jingwei 《Journal of Arid Land》 SCIE CSCD 2017年第2期234-243,共10页
The freeze-thaw (FT) processes affect an area of 46.3% in China. It is essential for soil and water conservation and ecological construction to elucidate the mechanisms of the FF processes and its associated soil er... The freeze-thaw (FT) processes affect an area of 46.3% in China. It is essential for soil and water conservation and ecological construction to elucidate the mechanisms of the FF processes and its associated soil erosion processes. In this research, we designed the control simulation experiments to promote the understanding of FT-water combined erosion processes. The results showed that the runoff of freeze-thaw slope (FTS) decreased by 8% compared to the control slope (CS), and the total sediment yield of the FTS was 1.10 times that of the CS. The sediment yield rate from the FTS was significantly greater than that from the CS after 9 min of runoff (P〈0.01). Both in FTS and CS treatments, the relationships between cumulative runoff and sediment yield can be fitted well with power functions (R2〉0.98, P〈0.01). Significant differences in the mean weight diameter (MWD) values of particles were between the CS and the FTS treatments in the erosion were smaller than those under FTS for both washed and observed for washed particles and splashed particles process (P〈0.05). The mean MWD values under CS splashed particles. The ratio of the absolute value of a regression coefficient between the CS and the FTS was 1.15, being roughly correspondent with the ratio of K between the two treatments. Therefore, the parameter a of the power function between cumulative runoff and sediment yield could be an acceptable indicator for expressing the soil erodibility. In conclusion, the FTS exhibited an increase in soil erosion compared to the CS. 展开更多
关键词 freeze-thaw erosion loess soil soil erodibility RUNOFF sediment size-selectivity rainfall simulation
下载PDF
Interactions between wind and water erosion change sediment yield and particle distribution under simulated conditions 被引量:9
17
作者 TUO Dengfeng XU Mingxiang +1 位作者 ZHAO Yunge GAO Liqian 《Journal of Arid Land》 SCIE CSCD 2015年第5期590-598,共9页
Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion o... Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion occur. We used a wind tunnel and simulated rainfall to study sediment yield, particle-size distribution and the fractal dimension of the sediment particles under wind and water erosion. The experiment was conducted with wind ero- sion firstly and water erosion thereafter, under three wind speeds (0, 11 and 14 m/s) and three rainfall intensities (60, 80 and 100 ram/h). The results showed that the sediment yield was positively correlated with wind speed and rain- fall intensity (P〈0.01). Wind erosion exacerbated water erosion and increased sediment yield by 7.25%-38.97% relative to the absence of wind erosion. Wind erosion changed the sediment particle distribution by influencing the micro-topography of the sloping land surface. The clay, silt and sand contents of eroded sediment were also posi- tively correlated with wind speed and rainfall intensity (P〈0.01). Wind erosion increased clay and silt contents by 0.35%-19.60% and 5.80%-21.10%, respectively, and decreased sand content by 2.40%-8.33%, relative to the absence of wind erosion. The effect of wind erosion on sediment particles became weaker with increasing rainfall intensities, which was consistent with the variation in sediment yield. However, particle-size distribution was not closely correlated with sediment yield (P〉0.05). The fractal dimension of the sediment particles was significantly different under different intensities of water erosion (P〈0.05), but no significant difference was found under wind and water erosion. The findings reported in this study implicated that both water and wind erosion should be controlled to reduce their intensifying effects, and the controlling of wind erosion could significantly reduce water erosion in this wind-water erosion crisscross region. 展开更多
关键词 sediment yield particle-size distribution fractal dimension wind and water erosion
下载PDF
Sediment Deposition and Resuspension in Mouth Bar Area of the Yangtze Estuary 被引量:3
18
作者 李九发 何青 +1 位作者 莉莉 沈焕庭 《China Ocean Engineering》 SCIE EI 2000年第3期339-348,共10页
A comprehensive analysis is conducted based on observations on topography, tidal current, salinity, suspended sediment and bed load during the years of 1982, 1983, 1988, 1989. 1996, and 1997 in the Yangtze Estuary. Re... A comprehensive analysis is conducted based on observations on topography, tidal current, salinity, suspended sediment and bed load during the years of 1982, 1983, 1988, 1989. 1996, and 1997 in the Yangtze Estuary. Results show that the deformation of tidal waves is distinct and the sand carrying capacity is large within the mouth bar due to strong tidal currents and large volume of incoming water and sediments. Owing to both temporal and spatial variation of tidal current, deposition and erosion ore extremely active. In general a change of up to 0.1 m of bottom sediments takes place during a tidal period. The maximum siltation and erosion are around 0.2 m in a spring to neap tides cycle. The riverbed is silted during flood when there is heavy sediment load, eroded during dry season when sediment lo:ld is low. The annual average depth of erosion anti siltation on the riverbed is around 0.6 m. In particular cases, it may increase to 1.4 m to 2.4 m at some locations. 展开更多
关键词 the Yangtze Estuary sediment movement deposition sediment resuspension mouth bar
下载PDF
The observations of seabed sediment erosion and resuspension processes in the Jiaozhou Bay in China 被引量:3
19
作者 LIU Xiaolei ZHU Chaoqi +3 位作者 ZHENG Jiewen GUO Lei YIN Ping JIA Yonggang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期79-85,共7页
In estuarine and coastal areas, the seabed is in a constant process of dynamic change under marine conditions.Seabed sediment erosion and resuspension are important processes that safely control the geological environ... In estuarine and coastal areas, the seabed is in a constant process of dynamic change under marine conditions.Seabed sediment erosion and resuspension are important processes that safely control the geological environment. Field tripod observations conducted in the Jiaozhou Bay in China are reported, to investigate the effects of hydrodynamic conditions on the erosion and resuspension processes of the seabed. The observational results show that the maximum shear stress created by tidal currents can reach 0.35 N/m2, which is higher than the wave-induced shear stress during fair weather conditions. A seabed erosion frequently occurs during the flood tide, whereas a seabed deposition occurs during ebb tide. Waves can produce a bottom shear stress approximately equivalent to that induced by currents when the local wind reaches Force 4 with a speed of 5 m/s.When the wind reaches 7 m/s and the significant wave height reaches 26 cm, waves play a more significant role than currents in the dynamic processes of the seabed sediment resuspension and lead to a high value of turbidity that is approximately two to eight times higher than that in fair weather. These analyses clearly illustrate that periodic current-induced sediment erosion and resuspension are dominant in fair weather, whereas episodic high waves are responsible for significant sediment resuspension. Additional work is needed to establish a more thorough understanding of the mechanisms of sediment dynamics in the Jiaozhou Bay. 展开更多
关键词 seabed sediment erosion RESUSPENSION TRIPOD Jiaozhou Bay
下载PDF
Analysis on Suspended Sediment Deposition Rate for Muddy Coast of Reclaimed Land 被引量:3
20
作者 王义刚 李熙 林祥 《China Ocean Engineering》 SCIE EI 2001年第1期147-153,共7页
A new expression for calculating suspended fine-sediment deposition rate is developed based on theoretic analysis and experiments. The resulting equation is applied to simulation of fine sediment deposition in the rec... A new expression for calculating suspended fine-sediment deposition rate is developed based on theoretic analysis and experiments. The resulting equation is applied to simulation of fine sediment deposition in the reclaimed land in the Hangzhou Bay, China. The hydrodynamic environment in this area is solved by use of a long wave model, which gives the 2D-velocity field and considers bathymetric changes due to fine sediment deposition. The expression is proved convenient to use in engineering practice, and the predicted deposition rate agrees with the annual data available from field measurements from the first year to the third year after the construction of the long groin as a reclaiming method. 展开更多
关键词 sediment deposition rate muddy coast fine suspended sediment tidal flow topographic change
下载PDF
上一页 1 2 182 下一页 到第
使用帮助 返回顶部